
Getting Started with JBoss

J2EE applications on the JBoss 3.2.x Server

Luke Taylor and The JBoss Group

© JBoss inc, 2004, all rights reserved. The license given with the downloaded version of the book is
a single user license. Redistribution of this document is explicitely forbiden without the prior
written consent of JBoss inc.

Contents

 Preface v
: Foreword - v
: Target Audience - v
: What this Book Covers - vi
: About the Authors- - vi

CHAPTER 1 Getting Started 1
1.1: Downloading and Installing JBoss - 1
1.2: Starting and Stopping the Server - 2

Running as a Service - 4

CHAPTER 2 The JBoss Server – A Quick Tour 5
2.1: Server Structure - 5

Main Directories - 5
Server Configurations- 7

2.2: Basic Configuration Issues - 9
Core Services- 9

Logging Service - 9
Security Service - 10

Additional Services - -11
2.3: The Web Container – Tomcat- -12

CHAPTER 3 About the Example Applications 14
3.1: The J2EE Tutorial -14

What’s Different?- -15
Container-Specific Deployment Descriptors- - 15
Database Changes - 16
Security Configuration- - 16

3.2: J2EE in the Real World- -16

CHAPTER 4 The Duke’s Bank Application 18
4.1: Building the Application -18
ii

Preparing the Files -19
Compiling the Java Source -19
Package the EJBs - -20
Package the WAR File. - -20
Package the Java Client - -20
Assembling the EAR -20
The Database - -21

Enabling the HSQL MBean and TCP/IP Connections - 21
Creating the Database Schema - 22
The HSQL Database Manager Tool- - 23

Deploying the Application -24
4.2: JNDI and Java Clients -25

The jndi.properties File - -25
4.3: Security -26

Configuring a Security Domain -26
UsersRolesLoginModule Files- -27
The J2EE Security Model - -28

Authentication- - 28
Access Control (Authorization)- - 29

Application JNDI Information in the JMX Console - - - - - - - - - - - - - - - - - - - -29

CHAPTER 5 JMS and Message-Driven Beans 31
5.1: Building the Example -32

Compiling and Packaging the MDB and Client - -32
Specifying the Source Queue for the MDB - 32

5.2: Deploying and Running the Example -32
Running the Client -33

5.3: Managing JMS Destinations -33
The jbossmq-destinations-service.xml File - -34
Using the DestinationManager from the JMX Console - - - - - - - - - - - - - - - - - -34
Administering Destinations -34

CHAPTER 6 Container-Managed Persistence 36
6.1: Building the Example -36

Compiling the Code -37
Packaging the Jars -37

6.2: Deploying and Running the Application - -37
Running the Client -39

6.3: CMP Customization -39
XDoclet -41
iii

CHAPTER 7 Web Services with JBoss.Net 42
7.1: JBoss.net -42
7.2: Duke’s Bank as a Web Service -43

The Web Service Archive (WSR) File - -43
Building and Deploying the WSR File - -44
Running the Client -45
Net Traffic Analysis -45

CHAPTER 8 Using other Databases 48
8.1: DataSource Configuration -48

JDBC-Wrapper Resource Adapters -48
DataSource Configuration Files -49

8.2: Examples -49
Using MySQL as the Default DataSource -49

Creating a Database and User - 50
Installing the JDBC Driver and Deploying the DataSource- - - - - - - - - - - - - - - - - - - 51
Testing the MySQL DataSource - 51

Setting up an XADataSource with Oracle 9i -52
Padding Xid Values for Oracle Compatibility - 52
Installing the JDBC Driver and Deploying the DataSource- - - - - - - - - - - - - - - - - - - 53
Testing the Oracle DataSource - 54

CHAPTER 9 Security Configuration 56
9.1: Security Using a Database -56
9.2: Using Password Hashing - -58
iv

 Preface
Getting Started with
Foreword
JBoss started out as an EJB container and has evolved over several years into a
fully fledged application server. While the architecture has grown to support
many new software technologies and additional features, there has always been
an emphasis on the implementation of the J2EE standards, regardless of whether
official certification has been achieved or not.

For the foreseeable future, JBoss will continue to be – first and foremost – a
J2EE application server.

Target Audience
The main aim of this book is to get you up and running with JBoss as quickly as
possible. We will use Sun’s J2EE 1.3 tutorial examples where possible to illus-
trate the deployment and configuration of J2EE applications in JBoss. While the
book is not intended to teach you J2EE, we will be covering the subject from
quite a basic standpoint so it will still be useful if you are new to J2EE. If you
would like to use JBoss to run the standard Sun J2EE tutorials then this is the
book for you. It should ideally be read in parallel with the tutorial texts.
 JBoss v

Preface
What this Book Covers
The scope of this book is using J2EE 1.3 on the JBoss 3.2.x series. At the time of writing, the latest
release is version 3.2.3. You should use this version or later with the examples.

We will cover downloading and installation and see how to start JBoss. Then we’ll have a quick tour of
the server directory structure and layout, the key configuration files and services.

Moving on to the examples, we’ll look at how to deploy the “Duke’s Bank” application from the Sun
J2EE Tutorial. This will let you see JBoss in action as quickly as possible and also gives you a chance to
get some practical experience of simple configuration and deployment issues. Further chapters cover
other J2EE topics which aren’t used in Duke’s Bank – JMS Messaging (and Message-Driven Beans)
and container-managed persistence (CMP). These also make use of the J2EE tutorial examples.

There is a separate chapter on web services. We work through how to expose EJB methods from the
Duke’s Bank application through web servies and then call them with a Java SOAP client.

Configuration of databases is an important issue and this is covered in “Using other Databases” on
page 48. We also work through some step-by-step examples.

In “Security Configuration” on page 56 we look at some more advanced security configuration options.

Suggestions for additional topics are always welcome.

About the Authors
Luke Taylor is an independent consultant based in Glasgow, Scotland. He obtained a Ph.D. in theoreti-
cal nuclear physics from Glasgow University and subsequently worked in London in software develop-
ment and as a consultant specializing in Java, CORBA, and security technologies. He founded the
company Monkey Machine (http://www.monkeymachine.ltd.uk) which offers services primarily in Java
and J2EE with a focus on open source implementations such as JBoss.
What this Book Covers vi

http://www.monkeymachine.ltd.uk)

CHAPTER 1 Getting Started
Getting Started with
1.1. Downloading and Installing JBoss
There are two ways you can get a copy of JBoss; you can either download a
binary distribution or you can obtain the latest version directly from the source
repository using cvs and build it yourself. This is straightforward enough, but
unless you need the latest code for a specific reason then you should probably
stick to the pre-packaged versions, at least to begin with.

You can download the latest version from the JBoss web site

http://www.jboss.org

At the time of writing, the latest stable release is version 3.2.3. The binary ver-
sions are available as either zip or tar.gz files – the contents are the same so grab
whichever one is most convenient for the platform you’re running on. Once it's
downloaded, unpack the archive to a suitable location on your machine. It should
all unpack into a single directory named “jboss-” with a version-number suffix.
Make sure you don't use a directory which has any spaces in the name (such as
the “Program Files” directory on Windows) as this may cause problems. There
are no additional installation steps needed before you can get started.
 JBoss 1

http://www.jboss.org

Getting Started
1.2. Starting and Stopping the Server
First make sure you have an up-to-date version of Java on your machine. You need the JDK, not just the
JRE. You should also make sure the JAVA_HOME environment variable is set to point to your JDK
installation1.

Now try running the server: you'll find a bin directory inside the main JBoss directory which contains
various scripts. Execute the “run” script (run.bat if you're on Windows, run.sh if you're on Linux or
another Unix-like system). You should then see the log messages from all the JBoss components as they
are deployed and started up. The last message (obviously with different values for the time and start-up
speed) should be:

00:23:38,718 INFO [Server] JBoss (MX MicroKernel) [3.2.3 (build: CVSTag=JBoss_3_2_3
date=200311301445)] Started in 26s:593ms

To get a live view of the running server, point your browser at the URL

 http://localhost:8080/jmx-console2.

You should see something similar to Figure 1.1. This is the JBoss Management Console which provides
a raw view of the JMX MBeans which make up the server3. You don't really need to know much about
these to begin with, but they can provide a lot of information about the running server and allow you to
modify its configuration, start and stop components and so on.

For example, find the “service=JNDIView” link and click on this. This particular MBean provides a
service to allow you to view the structure of the JNDI namespaces within the server. Now find the oper-
ation called “list” near the bottom of the MBean view page and click the “invoke”. The operation

1. This is required so that the tools.jar file, which contains the javac compiler classes, can be located. Javac is
needed for compiling JSPs.

2. Note that by default the web container runs on port 8080, so make sure you don't have anything else already on
your machine using that port. Also, there won’t be a default web application deployed at the root context, so
browsing to http://localhost:8080 will produce a “HTTP Status 500” error from Tomcat. On some
machines, the name “localhost” won’t resolve properly and you should use the local loopback address
“127.0.0.1” instead.

3. The Java Management Extensions (JMX) framework is a key part of the JBoss architecture. The instrumentable
components it defines are called MBeans (“Managed Beans”).
Starting and Stopping the Server 2

http://localhost:8080/jmx-console

Getting Started
returns a view of the current names bound into the JNDI tree – very useful when you start deploying
your own applications and want to know why you can’t resolve a particular EJB name.

FIGURE 1.1. View of the JMX Management Console Web Application

Have a look at some of the other MBeans and their listed operations, and try changing some of the con-
figuration attributes and see what happens. None of the changes made through the console are persist-
ent; the original configuration will be reloaded when you restart JBoss so you can experiment freely and
shouldn’t be able to do any permanent damage.
Starting and Stopping the Server 3

Getting Started
To stop the server, you can type Ctrl-C or you can run the shutdown script from the bin directory. Alter-
natively, you can use the management console (look for “type=Server” under the section “jboss.system”
and invoke the “shutdown” operation).

1.2.1. Running as a Service
In a real deployment scenario, you won’t want to stop and start JBoss manually but will want it to run in
the background as a service or daemon when the machine is booted up. The details of how to do this
will vary between platforms and will require some system administration knowledge and root privi-
leges.

On Linux or other Unix-like systems, you will have to install a startup script (or get your system admin-
istrator to do it). There is an example in the JBoss bin directory called jboss_init_redhat.sh which you
can modify and use.

On a Windows system, you can use a utility like Javaservice which is freely available from

http://www.alexandriasc.com/software/JavaService/index.html.
Starting and Stopping the Server 4

http://www.alexandriasc.com/software/JavaService/index.html

CHAPTER 2 The JBoss Server – A
Quick Tour
Getting Started with
2.1. Server Structure
Now that you’ve downloaded your copy of JBoss and have run the server for the
first time, the first thing you will want to know is how the contents are laid out
and what goes where. At first glance there seems to be a lot of stuff in there and
it’s not obvious what you need to look at and what you can safely forget about (at
least to begin with) so we’ll explore the server directory structure, locations of
the key configuration files, log files, deployment and so on. It’s worth familiaris-
ing yourself with the layout at this stage as it will help you understand the JBoss
service architecture and you’ll know your way around when it comes to deploy-
ing your own applications.

2.1.1. Main Directories

The binary distribution unpacks into a top-level JBoss-3.2.3 directory. Through-
out the book, we will refer to this as the JBOSS_DIST directory. There are four
sub-directories immediately below this:

• bin – contains various scripts and associated files. We’ve already seen the
“run” script which starts JBoss.
 JBoss 5

The JBoss Server – A Quick Tour
• client – stores configuration and jar files which may be needed by a Java client application or an
external web container. You can select archives as required or use jbossall-client.jar.

• docs – contains the XML DTDs used in JBoss for reference (these are also a useful source of docu-
mentation on JBoss configuration specifics). There are also example JCA1 configuration files for
setting up datasources for different databases (such as MySQL, Oracle, Postgres)2.

• lib – jar files which are needed to run the JBoss microkernel. You should never add any of your own
jar files here.

• server – each of the subdirectories in here is a different server configuration. The configuration is
selected by passing the option “-c <config name>” to the run script. We’ll look at these next.

FIGURE 2.1. JBoss Directory Structure

1. J2EE Connector Architecture – provides a standard for providing connectivity between application servers and
existing Enterprise Information Systems (EIS).

2. JBoss comes with an embedded instance of the free Hypersonic database and there is a corresponding data-
source set up in the default configuration. If you want to use another database then you have to add the appropri-
ate JCA configuration information. We’ll see how to do this later.
Server Structure 6

The JBoss Server – A Quick Tour
2.1.2. Server Configurations
Fundamentally, the JBoss architecture consists of a JMX MBean server instance (the “microkernel”)
and a set of pluggable component services – the JMX MBeans. This makes it easy to assemble different
configurations and gives you the flexibility to tailor them to meet your requirements. You don’t have to
run a large, monolithic server all the time; you can remove the components you don’t need (which can
also reduce the server startup time considerably) and you can also integrate additional services into
JBoss by writing your own MBeans. You certainly don’t need to do this to be able to run standard J2EE
applications though – everything you need is already there. You don’t need a detailed understanding of
JMX either but it’s worth keeping a picture of this basic architecture in mind as it is central to the way
JBoss works.

Within the server directory, there are three example configurations: all, default and minimal, each of
which installs a different set of services. Not surprisingly, the default configuration is used if you don’t
pass any parameters to the run script, so that’s the one we were running in the previous chapter. It con-
tains everything you need to run a stand-alone J2EE server. The other two are

• minimal – the bare minimum required to start JBoss. It starts the logging service, a JNDI server and
a URL deployment scanner to find new deployments. This is what you would use if you want to use
JMX/JBoss to start your own services without anything else from J2EE. This is just the bare server
– there is no web container, no EJB or JMS.

• all – starts all the available services. This includes the RMI/IIOP and clustering services and the
web-services deployer which aren’t loaded in the default configuration.

You can add your own configurations too. The best way to do this is to copy an existing one that is clos-
est to your needs and modify the contents. For example, if you weren’t interested in using messaging,
you could copy the “default” directory, renaming it as “myconfig”, remove the jms subdirectory and
then start JBoss with the command

run -c myconfig

Whichever server configuration you’re using, the corresponding directory effectively is the server while
JBoss is running. It contains all the code and configuration information for the MBeans, it’s where the
log output goes and it’s where you deploy your applications. Let’s take a look at the contents of the
default directory. If you haven’t tried running the server yet, then do so now, as some of the sub-directo-
ries are only created if JBoss has previously been started. The full directory structure is shown in
Figure 2.1 . The sub-directories are:

• conf – contains the jboss-service.xml file which specifies the core services. Also used for additional
configuration files for these services.

• data – this is where the embedded Hypersonic database instance stores its data. It is also used by
JBossMQ (the JBoss implementation of JMS) to store messages on disk.
Server Structure 7

The JBoss Server – A Quick Tour
• deploy – you deploy your application code (jar, war and ear files) by dropping them in here. It is also
used for hot-deployable services (those which can be added to or removed from the running server)
and for deploying JCA resource adapters3. That’s why there’s a lot of stuff in there already – in par-
ticular you’ll notice the jmx-console application (an unpacked war file) which we were using earlier.
The directory is constantly scanned for updates and any modified components will be re-deployed
automatically. We’ll look at deployment in more detail later.

• lib – jar files needed by this server configuration. You can add required library files here for JDBC
drivers etc.

• log – this is where the logging information goes. JBoss uses the Jakarta log4j package for logging
and you can also use it directly in your own applications from within the server.

• tmp – used by the deployer for temporary storage of unpacked applications etc.
• work – used by Tomcat for compilation of JSPs.

The data, log, tmp and work directories are created by JBoss so won’t exist until you’ve run the server
at least once.

We’ve touched briefly on the issue of hot-deployment of services in JBoss so let’s have a look at a prac-
tical example of this before we go on to look at server configuration issues in more detail. Start JBoss if
it isn’t already running and take a look in the deploy directory again (make sure you’re looking at the
one in the default configuration directory). Remove the mail-service.xml file and watch the output from
the server:
18:20:51,312 INFO [MainDeployer] Undeploying file:/F:/servers/jboss-3.2.2/server/default/deploy/
mail-service.xml
18:20:51,312 INFO [MailService] Stopping18:20:51,312 INFO [MailService] Mail service 'java:/Mail'
removed from JNDI
18:20:51,312 INFO [MailService] Stopped
18:20:51,312 INFO [MailService] Destroying
18:20:51,312 INFO [MailService] Destroyed
18:20:51,312 INFO [DeploymentInfo] Cleaned Deployment: file:/F:/servers/jboss-3.2.2/server/
default/tmp/deploy/tmp32144mail-service.xml
18:20:51,328 INFO [MainDeployer] Undeployed file:/F:/servers/jboss-3.2.2/server/default/deploy/
mail-service.xml

Then replace the file and watch the JBoss re-install the service: hot-deployment in action.

3. The J2EE Connector Architecture defines the Resource Adapter Archive (RAR) file – used for storing JCA
implementations for a particular resource.
Server Structure 8

The JBoss Server – A Quick Tour
2.2. Basic Configuration Issues
Now that we’ve examined the layout of the JBoss server, we’ll take a look at some of the main configu-
ration files and what they’re used for, again relative to the default configuration directory.

2.2.1. Core Services
The core services which are started first are specified in the conf/jboss-service.xml file. If you have a
look at this file in an editor you'll see MBeans for various services including logging, security, JNDI
(and the JNDIView service which we saw earlier). You can try commenting out the entry for the JNDI-
View service like so:
<!--
 <mbean code="org.jboss.naming.JNDIView" name="jboss:service=JNDIView">
 </mbean>
-->

If you then restart JBoss, you’ll see that the JNDIView service no longer appears in the management
console listing. In practice, you should rarely, if ever, need to modify this file, though there is nothing to
stop you adding extra MBean entries in here if you want to. The alternative is to use a separate file in
the deploy directory and your service will then also be hot-deployable.

2.2.1.1 Logging Service

We mentioned already that log4j is used for logging. If you're not familiar with this package and would
like to use it in your applications, you should read more about it on the Jakarta web site. JBoss uses an
XML configuration file to set up log4j. You can find this file in the conf directory. It defines a set of
“appenders” for logging4. By default, JBoss produces output to both the console and a log file (stored in
the log directory). The logging level on the console is INFO whereas the file contains all logging. So if
things are going wrong and there doesn’t seem to be any useful information in the console, always
check the log file to see if there are any debug messages which might help you track down the problem.
You may also have to boost the logging limits set for individual categories. For example you will see
further down the log4j.xml file you may see the entry
 <!-- Limit JBoss categories to INFO -->
 <category name="org.jboss">
 <priority value="INFO"/>
 </category>

4. “appender” is a log4j term. It specifies a particular output logging destination, what categories of messages
should go there, the message format and the level of filtering (DEBUG, WARN, INFO etc.) which should be
applied.
Basic Configuration Issues 9

The JBoss Server – A Quick Tour
which limits the level to INFO for all JBoss classes (apart from those which have more specific over-
rides provided). If you change this to DEBUG it will produce a lot more logging output.

The file appender is set up to produce a new log file every day, so it doesn’t produce a one every time
you restart the server and it won’t write to a single file indefinitely. The current log file is called
server.log. Older files have the date they were written added to the name. You will notice that the log
directory also contains HTTP request logs which are produced by the web container.

As another example, let’s say you wanted to set the output from the container-managed persistence
engine to DEBUG level and to redirect it to a separate file, called cmp.log, in order to analyze the gen-
erated SQL commands. You would add the following code to the log4j.xml file:
 <appender name="CMP" class="org.jboss.logging.appender.RollingFileAppender">
 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
 <param name="File" value="${jboss.server.home.dir}/log/cmp.log"/>
 <param name="Append" value="false"/>
 <param name="MaxFileSize" value="500KB"/>
 <param name="MaxBackupIndex" value="1"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 </layout>
 </appender>

 <category name="org.jboss.ejb.plugins.cmp">
 <priority value="DEBUG" />
 <appender-ref ref="CMP"/>
 </category>

which creates a new file appender and specifies that it should be used by the logger (or “category”) for
the package org.jboss.ejb.plugins.cmp. This will be useful when we come to look at CMP (See “Con-
tainer-Managed Persistence” on page 36.). Full documentation on using log4j can be found at

http://jakarta.apache.org/log4j.

2.2.1.2 Security Service
The security domain information is stored in the file login-config.xml a list of named security domains,
each of which specifies a number of JAAS5 login modules which are used for authentication purposes
in that domain. When you want to use security in an application, you specify the name of the domain
you want to use in the application’s JBoss-specific deployment descriptors, jboss.xml and/or jboss-
web.xml.

5. The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication mod-
ules. You can use the ones that are provided or write your own if have more specific requirements.
Basic Configuration Issues 10

http://jakarta.apache.org/log4j/

The JBoss Server – A Quick Tour
2.2.2. Additional Services
The non-core, hot-deployable services are added to the deploy directory. They can be either XML
descriptor files (called <name>-service.xml) or JBoss “Service Archive” (SAR) files. SARs contain
both the XML descriptor and additional resources which the service requires (e.g. classes, library jar
files or other archives), all packaged up a single archive.

We’ll go through the deploy directory in the default configuration and identify the contents. This is
really just for the sake of completeness, so you can skip this section unless you’d like to know more
about the what the existing MBean components are for. In the default configuration deploy directory,
you’ll find the following files and sub-directories:

• http-invoker.sar – provides RMI/HTTP access for MBeans and EJBs.
• jbossweb-tomcat41.sar – an expanded SAR file containing the embedded Tomcat service. This pro-

vides the standard web container within JBoss.
• jms – JMS-specific services grouped together in a subdirectory.
• jmx-console.war – the management console web application which we used in the previous chapter.
• jmx-invoker-adaptor-server.sar – provide remote access to the JMX MBean server.
• management – sub-directory containing alternative management services, including an improved

web console. Currently still in development.
• cache-invalidation-service.xml – allows customized control of the EJB cache via JMS.
• hsqldb-ds.xml – sets up the embedded Hypersonic database service and the default data source.
• jboss-jca.sar – the JBoss JCA implementation. Allows the deployment of JCA resource adaptors

within JBoss.
• jboss-local-jdbc.rar and jboss-xa-jdbc.rar – these are JCA resource adapters to integrate JDBC

drivers which support DataSource and XADataSource respectively but for which there is no propri-
etary JCA implementation.

• mail-service.xml – allows applications and services to use JavaMail from within JBoss. Must be
configured with relevant mail server information.

• properties-service.xml – amongst other things, allows the setting of global system properties (as
returned by System.getProperties).

• schedule-manager-service.xml and scheduler-service.xml – task scheduling service.
• snmp-adaptor.sar – JMX to SNMP adaptor.
• sqlexception-service.xml – provides a means of identifying non-fatal SQL exceptions for a given

JDBC driver.
• transaction-service.xml – together with the MBeans in conf/jboss-service.xml, sets up the JBoss

transaction manager and associated services.
Basic Configuration Issues 11

The JBoss Server – A Quick Tour
• user-service.xml – a place to add your own MBeans.
• uuid-key-generator.sar – generates unique UUID-based keys.

The files in the jms subdirectory are all specific to JMS messaging. Many of them are “invocation lay-
ers” which define the transport protocols over which the message transfer takes place. Additional files
are:

• hsqldb-jdbc2-service.xml – implements caching and persistence using the embedded HSQL data-
base. Also contains the DestinationManager MBean which is the core service for the JMS imple-
mentation.

• jbossmq-destinations-service.xml – sets up standard JMS Topics and Queues which are used by the
JBoss test suite.

• jbossmq-service.xml – additional services for JMS, including the interceptor configuration.
• jms-ra.rar – resource adapter to allow JMS connection factories to be handled by JCA.
• jms-ds.xml – sets up JBoss Messaging as the default JMS provider and supplies JCA configuration

information to integrate the JMS resource adapter with JBoss JCA6.

More detailed information on all these services can be found in “JBoss Administration and Develop-
ment” which also provides comprehensive information on server internals and the implementation of
services such as JTA and the J2EE Connector Architecture (JCA).

2.3. The Web Container – Tomcat
JBoss now comes with Tomcat 4.1.x as the default web container. The embedded Tomcat service is the
expanded SAR jbossweb-tomcat41.sar in the deploy directory. All the necessary jar files needed by
Tomcat can be found in there, as well as a web.xml file which provides a default configuration set for
web applications. If you are already familiar with configuring Tomcat, have a look at the META-INF/
jboss-service.xml file. Within the MBean declaration for the Tomcat service you will find an element

<attribute name="Config"> </attribute>

which contains a subset of the standard Tomcat format configuration information. As it stands, this
includes setting up the HTTP connector on the default port 8080, an AJP connector on port 8009 (can
be used if you want to connect via a web server such as Apache) and an example of how to configure an
SSL connector (commented out by default).

6. Although the “-ds” suffix is used, it doesn’t apply only to DataSource configuration but can be used to config-
ure any resource adapter for use with JBoss JCA. The <adapter-display-name> element links the information
in the JBoss descriptor to a specific resource adapter.
The Web Container – Tomcat 12

The JBoss Server – A Quick Tour
You shouldn’t need to modify any of this other than for advanced use. If you’ve used Tomcat before as
a stand-alone server you should be aware that things are a bit different when using the embedded serv-
ice. JBoss is in charge and you shouldn’t need to access the Tomcat directory at all – web applications
are deployed by putting them in the JBoss deploy directory and logging output from Tomcat (both inter-
nal and access logs) can be found in the JBoss log directory.
The Web Container – Tomcat 13

CHAPTER 3 About the Example
Applications
Getting Started with
3.1. The J2EE Tutorial
We will make use of the example applications provided by Sun in the J2EE tuto-
rial, in particular the “Duke’s Bank” application. You can find the tutorial on-line
at

 http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

You should read the getting started information there and download the example
code from

http://java.sun.com/j2ee/1.3/download.html#tutorial

Duke’s Bank also makes some use of the Jakarta “Struts” framework which you
can get from http://jakarta.apache.org/struts.

We will look at how to run the code in JBoss, supplementing the tutorial where
necessary with JBoss-specific configuration information and deployment
descriptors. While you’re online, make sure you’ve downloaded the additional
code that comes with this document – the file should be a zip archive called
jbossj2ee-src.zip. You should be able to get it from
 JBoss 14

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/j2ee/1.3/download.html#tutorial
http://jakarta.apache.org/struts

About the Example Applications
 http://www.jboss.org/docs/jbossj2ee-src.zip

The tutorial uses the Apache “ant” build tool, which you should download and install1. Ant is almost
universally used in Java projects these days so if you aren’t already familiar with its use then we recom-
mend you spend some time reading the documentation that comes with it and learning the basics of Ant
build files. The default file name is build.xml ant it contains a set of “targets” which you can use to per-
form automated tasks in your project. Usually all you will have to do is run the “ant” command in the
directory which contains the build file. The default target in the file will perform the necessary work.

The tutorial explains how to run the applications with the J2EE SDK Reference Implementation server.
Our aim will be to deploy them in JBoss.

3.1.1. What’s Different?
J2EE technologies are designed so that the code is independent of the server in which the application is
deployed. The deployment descriptors for EJBs and web applications (ejb-jar.xml and web.xml, respec-
tively) are also standard and do not change between different J2EE containers. However, there are still
one or two things that need to be done in order to move the application to JBoss. In particular, we have
to supply JBoss-specific descriptors and make sure that the database scripts will work.

3.1.1.1 Container-Specific Deployment Descriptors

Container-specific information is usually contained in extra XML descriptors which map logical infor-
mation used in the application (such as JNDI names and security role names) to actual values which are
used in the server. JBoss uses separate files for the EJB and web modules of an application, called
jboss.xml and jboss-web.xml, respectively. There is also a client version of these files which fulfils the
same role in a Java client, in combination with the J2EE application-client.xml descriptor2. If container-
managed persistence (CMP) is being used for entity EJBs, it is also possible to configure the JBoss per-
sistence engine through the jbosscmp-jdbc.xml file.

The J2EE SDK refers to these as “runtime descriptors” and defines all the information under one XML
DTD. The files are all called sun-j2ee-ri.xml once they have been added to the packaged archives by the
build process.

1. You can get an up-to-date copy of Ant from http://ant.apache.org/. Make sure you are using version 1.5.4 or
later.

2. Support for the J2EE application client framework was introduced in JBoss 3.2.3
The J2EE Tutorial 15

http://ant.apache.org/
http://www.jboss.org/docs/jbossj2ee-src.zip

About the Example Applications
3.1.1.2 Database Changes
The J2EE SDK comes with the Cloudscape database and this is used throughout the tutorials. We will
be using the Hypersonic database which runs as an embedded service within JBoss.

In a real-world situation, porting an application to a different databases is rarely straightforward, espe-
cially if proprietary features such as sequences, stored procedures and non-standard SQL are used. For
these simple applications, though it is relatively easy. When we look at the Duke’s Bank application in
the next chapter, you will see that there are only a few minor syntax changes required in the database
scripts.

We’ll look at how to configure JBoss to use a different database in “Using other Databases” on page 48.

3.1.1.3 Security Configuration
J2EE defines how you specify security constraints within your application, but doesn’t say how the
authentication and access control mechanisms are actually implemented by the server or how they are
configured. As we mentioned earlier, JBoss uses JAAS to provide a pluggable means of incorporating
different security technologies in your applications. It also comes with a set of standard modules for the
use of file, database and LDAP-based security information. We’ll start out using file-based information
as this is the simplest approach.

3.2. J2EE in the Real World
The examples here are only intended to get you up and running with JBoss and to help you familiarise
yourself with the basics. The applications definitely aren’t intended to reflect how you should go about
writing production J2EE software – indeed there is a lot of differing opinion on this subject. Many peo-
ple disagree on the use of EJBs for example, particularly the use of entity beans; the use of bean-man-
aged persistence is especially controversial yet is convenient for examples. There is also endless debate
about the use of different web technologies (it would be safe to say that not everyone loves JSPs) and
the numerous different “Model-2” frameworks that are out there. Struts was one of the first and is prob-
ably the best known but is not without its critics. We’ve provided some sources at the end of this chapter
which you can check out for more information.

Similarly we wouldn’t necessarily recommend that you set up your projects using the same structure as
the examples. We’ve stuck to the simple layout of the originals but in practice you may want to do
things differently. For a start you’ll need to include test code which will often mean writing tests using
the JUnit test framework or one of its close relations. You’ll also need a means of running it as part of
your build. Ant can help you here as it has tasks which are used to run JUnit tests.
J2EE in the Real World 16

http://www.junit.org
http://www.junit.org

About the Example Applications
If you’re starting out, your best bet is probably to look at some existing open-source projects and see
how they are structured, and then pick something appropriate for your project. Alternatively you might
want to look at a tool like Maven

http://maven.apache.org

which attempts to go beyond Ant and provide a standardized framework for building and testing
projects.

Finally, we hope you’ll realise that there’s a lot more depth to JBoss than we can hope to cover here and
once you’ve worked your way through this basic introduction, we hope you’ll be eager to learn more.
JBoss is also a continually evolving project with lots of plans for the future. So keep an eye on the
bleeding-edge version, even if you’re running all your production applications on the stable 3.2.x series.

TABLE 1. Further Information Sources

“JBoss Admin. and Development Guide” (Scott Stark et al.) –
comprehensive JBoss documentation covering advanced
JBoss topics.

http://www.jboss.org/docs/index

“JBoss Clustering” (Sacha Labourey and Bill Burke) – how to
run clustered JBoss servers for performance and high availa-
bility.

http://www.jboss.org/docs/index

JBoss Workbook for “Enterprise Java Beans – 3rd Edition” http://www.oreilly.com/catalog/
entjbeans3/workbooks/index.html

“Mastering EJB” (Ed. Roman et al.) – free PDF of book cov-
ering EJB 2.0 specification. Very pro-EJB.

http://www.theserverside.com/books/
masteringEJB/index.jsp

“Expert One-on-One: J2EE Design and Development” (Rod
Johnson) – in-depth discussion of J2EE in real-world projects.

http://www.wiley.com/WileyCDA/
WileyTitle/productCd-
0764543857.html
J2EE in the Real World 17

http://maven.apache.org
http://www.theserverside.com/books/masteringEJB/index.jsp
http://www.jboss.org/docs/index
http://www.jboss.org/docs/index
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0764543857.html
http://www.oreilly.com/catalog/entjbeans3/workbooks/index.html

CHAPTER 4 The Duke’s Bank
Application
Getting Started with
One of the first thing you’ll want to do once you’ve got a copy of JBoss is find
out how to get an application up and running and see what’s involved. So we’ll
do just that with the Duke’s Bank example from the J2EE tutorial.

Duke’s Bank demonstrates a selection of J2EE technologies working together to
implement a simple on-line banking application. It uses EJBs, web components
(JSPs and servlets) and uses a database to store the information. The persistence
is bean-managed, with the entity beans containing the SQL statements which are
used to manipulate the data.

We won’t look in detail at its functionality or comment on the implementation
but will concentrate on a step-by-step guide to building and deploying it in
JBoss.

4.1. Building the Application
You should already have downloaded the J2EE 1.3 tutorial files and the examples
which contain Duke’s Bank, as described in “The J2EE Tutorial” on page 14.
Make sure you have the 1.3 tutorial files and not the 1.4 ones, which contain the
same examples but with a different directory layout.
 JBoss 18

The Duke’s Bank Application
The application also makes use of the Struts web framework so you must download this too. You can
get it from

 http://jakarta.apache.org/struts.

If you are following the tutorial instructions to build it for the reference implementation, these were
written for Struts 1.0 which is now out of date. It will work with version 1.1 but you must also add the
extra jar files supplied with Struts to the application, along with the struts.jar file.

We’ll go through building and deploying the application first and then look at things in a bit more detail.

4.1.1. Preparing the Files
You should be able to obtain the supplementary JBoss files from the same place as this document – the
file should be a zip archive called jbossj2ee-src.zip. Download this and unpack it into the j2eetutorial
directory, adding to the existing tutorial files. All the Duke’s Bank code is in a bank subdirectory and
you should find a jboss-build.xml file sitting in there if you’ve unpacked the files correctly. This is our
ant build script for the JBoss1 version of the application. The targets you’ll find in it are pretty similar to
the original ones.

Download the struts distribution, as above, and copy the struts.jar, struts-logic.tld and the supporting
jakarta-commons jars (all those prefixed with “commons-”) to bank/jar.

In the j2eetutorial directory you should find a file called “build.properties”. Edit this to set the
jboss.home property to the full path to your JBoss 3.2.x installation2. The build process makes use of
the jar files and utilities that come with JBoss so it needs to know where to find them. If you’ve
unpacked JBoss 3.2.3 to the “C:” drive on a windows machine, you would set it to
Set the path to the JBoss directory containing the JBoss application server
(This is the one containing directories like "bin", "client" etc.)

jboss.home=C:/jboss-3.2.3

4.1.2. Compiling the Java Source
At the command line, change to the j2eetutorial/bank directory. All the build commands will be run
from here. Compilation should be pretty straightforward – just type the command:

ant -f jboss-build.xml compile

1. Rather than just overrating the existing build.xml file, we’ve used a different name from the default. This means
that ant must now be run as “ant -f jboss-build.xml”.

2. i.e. the JBOSS_DIST directory (See “Main Directories” on page 5.)
Building the Application 19

http://jakarta.apache.org/struts

The Duke’s Bank Application
which runs the “compile” target in the build script. If there aren’t any errors, you should find a newly
created build directory with the class files in it.

4.1.3. Package the EJBs
The application has three separate EJB jars: account-ejb.jar, customer-ejb.jar and tx-ejb.jar. Each con-
tains the code and descriptors (ejb-jar.xml and jboss.xml) for the corresponding entity bean and an asso-
ciated “controller” session bean which the clients interact with (it is generally considered a bad idea for
clients to talk directly to entity beans). Executing the command

ant -f jboss-build.xml package-ejb

should create them (in the jar directory).

4.1.4. Package the WAR File.
Next target is the web application which provides the front end to allow users to interact with the busi-
ness components (the EJBs). The web source (JSPs, images etc.) is contained in the src/web directory
and is added unmodified to the archive. The ant WAR task also adds a WEB-INF directory which con-
tains the files which aren’t meant to be directly accessed by a web browser but are still part of the web
application. These include the deployment descriptors (web.xml and jboss-web.xml), class files, (e.g.
servlets and EJB interfaces) and extra jars and JSP tag-library descriptors required by the web applica-
tion (the Struts files in this example). The command to build the web client WAR file is

ant -f jboss-build.xml package-web

4.1.5. Package the Java Client
In addition to the web interface, there is a standalone Java client for administering customers and
accounts. You can build it using the command

ant -f jboss-build.xml package-client

It contains the application-client.xml and jboss-client.xml descriptors as well as the client jndi.proper-
ties file. The client jar will also be included as an additional module in the EAR file and the server.

4.1.6. Assembling the EAR
The EAR file is the complete application, containing the three EJB modules and the web module. It
must also contain an additional descriptor called application.xml. It is also possible to deploy EJBs and
web application modules individually but the EAR provides a convenient single unit.

ant -f jboss-build.xml assemble-app
Building the Application 20

The Duke’s Bank Application
should produce the final file JBossDukesBank.ear.

4.1.7. The Database
Before we can deploy the application, we need a viable database for it to run against. If you are writing
an application which uses container-managed EJB persistence, you can configure the engine to create
the tables for you at deployment, but otherwise you have to have a set of scripts to do the job. This is
also a convenient way of pre-populating the database with data.

4.1.7.1 Enabling the HSQL MBean and TCP/IP Connections
The HSQL database can be run in one of two modes: in-process or client-server. Since we are going to
be running the SQL scripts using a tool which connects to the database we want to make sure the data-
base is running in client-server mode and will accept TCP/IP connections (the HSQL documentation
refers to this as “server” mode). In later versions of JBoss, the client-server mode is disabled to prevent
direct database access which could be a security risk if the default login and password had not been
modified. Open the hsqldb-ds.xml file which you’ll find in the deploy directory and which sets up the
default datasource. Near the top of the file, you’ll find the <connection-url> element. Make sure the
value is set to
jdbc:hsqldb:hsql://localhost:1701

and that any other examples are commented out. So you should have something like:
 <!-- The jndi name of the DataSource, it is prefixed with java:/ -->
 <!-- Datasources are not available outside the virtual machine -->
 <jndi-name>DefaultDS</jndi-name>

 <!-- for tcp connection, allowing other processes to use the hsqldb
 database. This requires the org.jboss.jdbc.HypersonicDatabase mbean. -->
 <connection-url>jdbc:hsqldb:hsql://localhost:1701</connection-url>

 <!-- for totally in-memory db, not saved when jboss stops.
 The org.jboss.jdbc.HypersonicDatabase mbean is unnecessary
 <connection-url>jdbc:hsqldb:.</connection-url>
 -->
 <!-- for in-process db with file store, saved when jboss stops. The
 org.jboss.jdbc.HypersonicDatabase is unnecessary

 <connection-url>jdbc:hsqldb:${jboss.server.data.dir}/hypersonic/localDB
 </connection-url>
 -->

Now scroll down to the bottom of the file and you should find the MBean declaration for the Hyper-
sonic service:
 <mbean code="org.jboss.jdbc.HypersonicDatabase" name="jboss:service=Hypersonic">
 <attribute name="Port">1701</attribute>
 <attribute name="Silent">true</attribute>
 <attribute name="Database">default</attribute>
 <attribute name="Trace">false</attribute>
Building the Application 21

The Duke’s Bank Application
 <attribute name="No_system_exit">true</attribute>
 </mbean>

Make sure this is also uncommented. This is also needed if you want to be able to run the HSQL Data-
base Manager tool which we’ll be looking at shortly.

4.1.7.2 Creating the Database Schema

Where necessary, we have supplied modified scripts to run with HSQL and you’ll find them in the sql
directory3. The main differences are in the SQL syntax for applying constraints in the table creation
script hsql-create-table.sql. Apart from that the changes are trivial.

We’ve modified the corresponding tasks in the build file to call the appropriate HSQL tool for running
the script. If JBoss isn’t already running, you should start it now, so that the HSQL database is availa-
ble. First we need to create the necessary tables by running the command

ant -f jboss-build.xml db-create-table

Then run the following command to populate them with the required data

ant -f jboss-build.xml db-insert

and finally, if everything has gone according to plan, you should be able to view some of the data using

ant -f jboss-build.xml db-list

which lists the transactions for a specific account.

3. Those prefixed with “hsql-” have been altered. The others are identical to the originals.
Building the Application 22

The Duke’s Bank Application
4.1.7.3 The HSQL Database Manager Tool
Just as a quick aside at this point, start up the JMX console application web application and click on the
service=Hypersonic link which you’ll find under the section “jboss”.

FIGURE 4.1. View of the HSQL Database Manger

This will take you to the information for the Hypersonic service MBean4. Scroll down to the bottom of
the page and click the “invoke” button for the startDatabaseManager() operation. This starts up the
HSQL Manager – a Java GUI application which you can use to manipulate the database directly.

4. If you can’t find this, make sure the service is enabled as described in “Enabling the HSQL MBean and TCP/IP
Connections” on page 21.
Building the Application 23

http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=jboss%3Aservice%3DHypersonic

The Duke’s Bank Application
4.1.8. Deploying the Application
Deployment in JBoss is easy – you just have to copy the EAR file to the deploy directory. There’s also a
target in the build file for this so you can type

ant -f jboss-build.xml deploy

and this will assemble the EAR file and deploy it. You should see something close to the following out-
put from the server (reduced for brevity):

19:30:32,966 INFO [MainDeployer] Starting deployment of package: file:/F:/servers/
jboss-3.2.3/server/default/deploy/JBossDukesBank.ear
19:30:32,997 INFO [EARDeployer] Init J2EE application: file:/F:/servers/jboss-3.2.3/
server/default/deploy/JBossDukesBank.ear
19:30:34,513 INFO [EjbModule] Deploying AccountEJB
...
19:30:45,356 INFO [Engine] StandardManager[/bank]: Seeding random number generator
class java.security.SecureRandom
19:30:45,356 INFO [Engine] StandardManager[/bank]: Seeding of random number generator
has been completed
19:30:45,356 INFO [Engine] StandardWrapper[/bank:default]: Loading container servlet
default
19:30:45,356 INFO [Engine] StandardWrapper[/bank:invoker]: Loading container servlet
invoker
19:30:45,685 INFO [EARDeployer] Started J2EE application: file:/F:/servers/jboss-
3.2.3/server/default/deploy/JBossDukesBank.ear
19:30:45,685 INFO [MainDeployer] Deployed package: file:/F:/servers/jboss-3.2.3/
server/default/deploy/JBossDukesBank.ear

If there are any errors or exceptions, make a note of the error message and at what point it occurs (e.g.
during the deployment of a particular EJB, the web application or whatever). Check that the EAR is
complete and inspect the WAR file and each of the EJB jar files produced by the build to make sure they
contain all the necessary components (classes, descriptors etc.).

You can safely redeploy the application if it is already deployed. To undeploy it you just have to remove
the archive from the deploy directory. There’s no need to restart the server in either case. If everything
seems to have gone OK, then point your browser at the application URL

http://localhost:8080/bank/main

You should be forwarded to the application login page. As explained in the tutorial, you can login with
a customer Id of 200 and the password “j2ee”5.

5. If you get an error at this point, check again that you have set up the database correctly as described in “Enabling
the HSQL MBean and TCP/IP Connections” on page 21. In particular, check that the connection-url is right.
Then make sure that you have populated the database with data.
Building the Application 24

http://localhost:8080/bank/main

The Duke’s Bank Application
You should also be able to run the standalone client application using the command
ant -f jboss-build.xml run-client

This is a Swing GUI client which allows you to administer the customers and accounts.

4.2. JNDI and Java Clients
It’s worth taking a brief look at the use of JNDI with standalone clients. The example makes use of the
J2EE “Application Client” framework which has been introduced in JBoss 3.2.36. This introduces the
concept of a client-side local environment naming context (within which JNDI names are resolved with
the prefix “java:/comp/env”). This is identical to the usage on the server side; the additional level of
indirection means you can avoid using hard-coded names in the client. The name mapping is effected
by the use of the proprietary jboss-client.xml which resolves the references defined in the standard
application-client.xml. See “Container-Specific Deployment Descriptors” on page 15 for more infor-
mation on how this works.

4.2.1. The jndi.properties File
One issue with a Java client is how it bootstraps itself into the system – how it manages to connect to
the correct JNDI server to lookup the references it needs. The information is supplied by using standard
Java properties. You can find details of these and how they work in the JDK API documentation for the
javax.naming.Context class. They can either be coded, or supplied in a file named jndi.properties. The
file we’ve used looks like this:
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming.client
j2ee.clientName=bank-client

The first three are standad properties, which are set up to use the JBoss JNDI implementation. The
fourth “j2ee.clientName” is a custom property which identifies the client deployment information on
the server side. The name must match the jndi-name specified in the jboss-client.xml descriptor:
<jboss-client>
 <jndi-name>bank-client</jndi-name>

 <ejb-ref>
 <ejb-ref-name>ejb/customerController</ejb-ref-name>
 <jndi-name>MyCustomerController</jndi-name>
 </ejb-ref>

6. See the changenote at http://sourceforge.net/tracker/index.php?func=detail&aid=840598&group_id=22866&atid=381174 for full
details.
JNDI and Java Clients 25

http://sourceforge.net/tracker/index.php?func=detail&aid=840598&group_id=22866&atid=381174

The Duke’s Bank Application
 <ejb-ref>
 <ejb-ref-name>ejb/accountController</ejb-ref-name>
 <jndi-name>MyAccountController</jndi-name>
 </ejb-ref>
</jboss-client>

You don’t need to worry about any of this if you’re building web applications.

4.3. Security
You may have noticed that we haven’t done anything so far to set up any security configuration for the
application. In fact there isn’t any security to speak of and you can login with any password and gain
access to the account – not much use for an on-line bank. Logging in with an invalid Id will cause the
application to crash when the first JSP tries to access the (non-existent) user’s accounts – not exactly
ideal either.

If a web application doesn’t have a “security domain” specified7, JBoss assigns it a “NullSecurityMan-
ager” instance by default. This will allow any login to succeed, explaining the above behaviour.

4.3.1. Configuring a Security Domain
Enabling security for your application is done through the JBoss-specific deployment descriptors. To
protect the web application, you have to include a security-domain element in the jboss-web.xml:
<jboss-web>
 <security-domain>java:/jaas/dukesbank</security-domain>
 ...
</jboss-web>

If you also want access controls to be applied at the EJB layer, you should add an identical element to
the jboss.xml file too:
<jboss>
 <security-domain>java:/jaas/dukesbank</security-domain>

 <enterprise-beans>
 ...

</jboss>

7. The term “security domain” is widely used in security parlance, not always with the same meaning. It generally
refers to a set of users (or components) operating under a common set of authentication and access-control
mechanisms. In JBoss this is seen in the mapping of a security domain name to a particular set of login modules
in the login-config.xml file. The term is often used interchangeably with “realm”.
Security 26

The Duke’s Bank Application
What this means is that JBoss will bind a security manager instance for our application under the JNDI
name java:/jaas/dukesbank. The security domain for our application is named “dukesbank” and you
can configure it in the conf/login-config.xml file which we first saw in “Security Service” on page 10. If
you take a look at that file, you’ll see how each security domain has an application-policy element. The
name attribute is the security domain name, so to add a login configuration for our application, we would
insert an extra entry of the form
<application-policy name = "dukesbank">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag = "required" />
 </authentication>
</application-policy>

where the authentication element contains a sequence of login-module child elements, each of which
specifies a JAAS login module implementation which will be used to authenticate users. The “required”
flag means that login under this module must succeed for the user to be authenticated. The UsersRoles-
LoginModule which we’ve specified here is a simple login module which stores valid user names, pass-
words and roles in properties files. Any security domains which don’t have a login configuration entry
will default to the policy named “other” which you will find at the bottom of the login-config.xml file.
By default it uses this same login module, so we don’t really need to add a specific entry for our appli-
cation. However it’s a good idea for completeness sake and you may want to experiment with adding
different login modules later.

To recap, here are the steps you need to follow to secure Duke’s Bank:

1. Add the security-domain element to each of the jboss.xml and jboss-web.xml descriptors in the dd
directory. It should already be there, commented out.

2. Add an entry to the conf/login.xml file for the “dukesbank” security domain as above (optional).
3. Create the users.properties and roles.properties files which contain the security information for the

information for the application and include these in the EAR file (this has already been done for
you).

4. Follow through the build steps to re-package the EJBs and the web application (to make sure the
modified descriptors are included).

5. Assemble the EAR file and re-deploy it to JBoss.

Again make sure that the application deploys OK without any errors and exceptions and try accessing it
with your browser as before. This time you should not be able to login without the correct username and
password combination.

4.3.2. UsersRolesLoginModule Files
Have a quick look at the format of the files so that you can experiment with adding users of your own.
You’ll find them in the src directory. The users.properties file contains name-value pairs of the form
Security 27

The Duke’s Bank Application
username=password. The roles.properties entries are the user name and a comma-separated list of roles
for that user.
username=role1,role2...

In Duke’s Bank, the user “200” must be given the role “BankCustomer” to be able to access the web
application and the EJB methods which it calls.

In a real project you will want to use a more sophisticated approach. You can find out more about using
JAAS login modules in the JBoss “JAAS Howto” document which you can download from http://
sourceforge.net/docman/?group_id=22866. We’ll also look at security in more detail in “Security Config-
uration” on page 56.

4.3.3. The J2EE Security Model
We’ve only covered the proprietary aspects of securing a J2EE application in JBoss and we won’t go
into the details of standard J2EE security as this is covered elsewhere. However a brief overview in the
context of the Duke’s Bank application is worthwhile. For more details you should see the relevant sec-
tions in the tutorial, the EJB and servlet specifications, or any textbook on J2EE applications.

4.3.3.1 Authentication
The servlet spec. defines a standard means of configuring the login process for web applications. You
will find an example in the element login-config in the web.xml file for Duke’s Bank:
<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>Default</realm-name>
 <form-login-config>
 <form-login-page>/logon</form-login-page>
 <form-error-page>/logonError</form-error-page>
 </form-login-config>
</login-config>

This is specifying that a form-based login should be used to obtain a username and password (as
opposed to HTTP basic authentication for example, where the browser pops up a login dialog). It also
specifies the URL that should be used for the login (/logon) and the URL which the user is forwarded to
on a login error, such as a bad password. The format of the login form – the URL to submit to and the
field names for username and password are defined in the spec. You can see an example in the file
logon.jsp which is used in the application8.

You should keep in mind that the authentication logic which decides whether a login succeeds or fails is
outside the scope of the spec. The actual authentication mechanism is contained in the login modules
that a security domain uses. So by adding the security-domain tag to your application, and thus linking
Security 28

http://sourceforge.net/docman/?group_id=22866
http://sourceforge.net/docman/?group_id=22866

The Duke’s Bank Application
it to an entry in login-config.xml, you are effectively specifying what authentication logic will be used,
be it a database, LDAP or whatever.

4.3.3.2 Access Control (Authorization)
J2EE uses a role-based access-control model, with the emphasis placed on configuration rather than
code; you can restrict access to EJBs or individual EJB methods in the ejb-jar.xml file or to specific
URLs in the web.xml file by defining which user roles are allowed to access them. A set of roles, again
decided by the underlying security mechanism, will be assigned to a user as part of the logon process
and each subsequent attempt to access a protected resource will be checked to see if it is allowed.

If you have a look at in web.xml you will find the access controls under the security-constraint ele-
ment. You can see the list of restricted URLs there under web-resource-collection and the role which is
allowed to access them (BankCustomer) under the auth-constraint element. In the ejb-jar.xml file,
method access is controlled using a series of method-permission elements which contain lists of method
definitions and the roles that can call them (or <unchecked/> for any role).

4.3.4. Application JNDI Information in the JMX Console
Lets take a quick look at the JBoss JMX console again and see what information it shows about our
application. This time click on the service=JNDIView link and then invoke the list() operation at
the bottom of the page which displays the JNDI tree for the server. You should see the EJB modules

8. Note that the URL for form logins “j_security_check” is implemented by the web container (Tomcat)
and your code doesn’t play any part in the login process. In practice it isn’t too hard to break the example appli-
cation login (especially when it’s running in Tomcat 4) and you will get exceptions if you do things like brows-
ing directly to the login page or attempting to login twice in the same session. These are issues with the servlet
specification and Tomcat and you can find a lot of discussion of them online, e.g. in the Tomcat bugs database:
 http://nagoya.apache.org/bugzilla/show_bug.cgi?id=6279.
The example code just assumes that the standard model will be followed and doesn’t provide any workarounds.
So don’t push it too hard.
Security 29

http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=jboss%3Aservice%3DJNDIView
http://nagoya.apache.org/bugzilla/show_bug.cgi?id=6279

The Duke’s Bank Application
from Duke’s Bank listed near the top and the contents of their private environment naming contexts as
well as the names the entries are linked to in the server.

FIGURE 4.2. JMX Console JNDI View

Further down, under the java: namespace9, you should see
 +- jaas (class: javax.naming.Context)
 | +- dukesbank (class: org.jboss.security.plugins.SecurityDomainContext)
 | +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
 | +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
 | +- HsqlDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)

which is a list of the active security managers, bound under their security-domain names. Note that
these objects are created on demand, so the dukesbank entry will only appear if you have tried to log in to
the application.

9. The java: namespace is for names which can only be resolved within the VM. Remote clients can’t resolve
them, unlike those in the global namespace.
Security 30

CHAPTER 5 JMS and Message-
Driven Beans
Getting Started with
One thing that’s missing from the Duke’s Bank application is any use of JMS
messaging, so we’ll work through the tutorial example on Message Driven Beans
(MDB) to see how to use messaging in JBoss. We’ll assume you’re already
familiar with general JMS and MDB concepts. The J2EE tutorial code for the
MDB is in j2eetutorial/examples/src/ejb/simplemessage. We’ve supplied a build
file in the examples directory which will allow you to build the example from
scratch and run it in JBoss. We’ve also added the ejb-jar.xml file and the
jboss.xml file.

The example code is very simple. There are only two classes, one for the client
and one for the bean (unlike normal EJBs, MDBs don’t need any interfaces). The
client publishes messages to a JMS Queue and the MDB handles them via its
standard onMessage method. The messages are all of type javax.jms.TextMessage
and the bean simply prints out the text contained in each message.

The only container-specific tasks required are setting up the Queue in JBoss, and
configuring the MDB to accept messages from it.
 JBoss 31

JMS and Message-Driven Beans
5.1. Building the Example

5.1.1. Compiling and Packaging the MDB and Client
As before, the build file is called jboss-build.xml so, from the examples directory, first compile the files
with the command

ant -f jboss-build.xml compile-mdb

Then run the following commands:

ant -f jboss-build.xml package-mdb
ant -f jboss-build.xml package-mdb-client
ant -f jboss-build.xml assemble-mdb

Which will produce archives for the bean and the client and a combined EAR file in the jars directory.
We’ve retained the same layout as the Duke’s Bank build – with a dd directory containing the deploy-
ment descriptors and the jars directory containing the archives produced by the build. The examples
come with a set of pre-built EAR files in the ears directory but we won’t use these.

5.1.1.1 Specifying the Source Queue for the MDB
As with other container-specific information, the queue name for the MDB is specified in the jboss.xml
file:
<jboss>
 <enterprise-beans>
 <message-driven>
 <ejb-name>SimpleMessageBean</ejb-name>
 <destination-jndi-name>queue/MyQueue</destination-jndi-name>
 </message-driven>
 </enterprise-beans>
</jboss>

So the MDB will receive messages from the queue with JNDI name queue/MyQueue.

5.2. Deploying and Running the Example

To deploy the MDB, just copy the simplemessage.jar file to the JBoss deploy directory. A successful
deployment should look something like this:

19:51:07,872 INFO [MainDeployer] Starting deployment of package: file:/F:/servers/
jboss-3.2.3/server/default/deploy/SimpleMessage.ear
19:51:07,888 INFO [EARDeployer] Init J2EE application: file:/F:/servers/jboss-3.2.3/
server/default/deploy/SimpleMessage.ear
Building the Example 32

JMS and Message-Driven Beans
19:51:08,653 INFO [EjbModule] Deploying SimpleMessageEJB
19:51:11,060 WARN [JMSContainerInvoker] Could not find the queue destination-jndi-
name=queue/MyQueue
19:51:11,075 WARN [JMSContainerInvoker] destination not found: queue/MyQueue reason:
javax.naming.NameNotFoundException: MyQueue not bound
19:51:11,075 WARN [JMSContainerInvoker] creating a new temporary destination: queue/
MyQueue
19:51:11,091 INFO [MyQueue] Bound to JNDI name: queue/MyQueue
19:51:11,091 INFO [MyQueue] Started jboss.mq.destination:service=Queue,name=MyQueue
19:51:11,263 INFO [DLQHandler] Started null
19:51:11,263 INFO [JMSContainerInvoker] Started jboss.j2ee:binding=message-driven-
bean,jndiName=local/SimpleMessageEJB,plugin=invoker,service=EJB
19:51:11,263 INFO [MessageDrivenInstancePool] Started jboss.j2ee:jndiName=local/Sim-
pleMessageEJB,plugin=pool,service=EJB
19:51:11,263 INFO [MessageDrivenContainer] Started jboss.j2ee:jndiName=local/Sim-
pleMessageEJB,service=EJB
19:51:11,263 INFO [EjbModule] Started jboss.j2ee:module=simplemessage.jar,serv-
ice=EjbModule
19:51:11,263 INFO [EJBDeployer] Deployed: file:/F:/servers/jboss-3.2.3/server/
default/tmp/deploy/tmp17621SimpleMessage.ear-contents/simplemessage.jar
19:51:11,294 INFO [EARDeployer] Started J2EE application: file:/F:/servers/jboss-
3.2.3/server/default/deploy/SimpleMessage.ear
19:51:11,294 INFO [MainDeployer] Deployed package: file:/F:/servers/jboss-3.2.3/
server/default/deploy/SimpleMessage.ear

If you look more closely at this, you will see warnings that the message queue specified in the deploy-
ment doesn’t exist. In this case JBoss will create a temporary one for the application and bind it under
the supplied name. You can check it exists using the JNDIView MBean again – look under the “global”
JNDI namespace. We’ll look at how to explicitly create JMS destinations below.

5.2.1. Running the Client
Run the client with the command

ant -f jboss-build.xml run-mdb

and you should see output in both the client and server windows as they send and receive the messages
respectively.

5.3. Managing JMS Destinations
As with most things in JBoss, JMS Topics and Queues are implemented using MBeans. There are two
ways you can create them: you can add MBean declarations to the appropriate configuration file, or you
Managing JMS Destinations 33

JMS and Message-Driven Beans
can create them dynamically using the jmx-console application. If you use the latter method, they won’t
survive a server restart.

5.3.1. The jbossmq-destinations-service.xml File
You’ll find this file in the jms directory inside the deploy directory. It contains a list of JMS destinations
and sets up a list of test topics and queues which illustrate the syntax used. To add an extra queue for
our example, you simply add the following MBean declaration to the file:
 <mbean code="org.jboss.mq.server.jmx.Queue"
 name="jboss.mq.destination:service=Queue,name=MyQueue">
 </mbean>

5.3.2. Using the DestinationManager from the JMX Console
With JBoss running, bring up the JMX Console in your browser and look for the section labelled
“jboss.mq” in the main agent view. Click on the link which says service=DestinationManager. The Desti-
nationManager MBean is the main JMS service in JBoss and you can use it to create and destroy queues
and topics at runtime. Look for the operation called createQueue. This takes two parameters – the first is
a name for the Queue MBean (so will not usually be relevant to your application code) and the second is
the JNDI name. So enter “MyQueue” and “queue/MyQueue”1 for these respectively. Note that this will
fail if either of these names is already in use (for example if you have deployed the application as above
or added a Queue MBean using the XML configuration file. If this is the case you can either remove the
existing queue or just try another name.

5.3.3. Administering Destinations
Once you’ve created a Queue or Topic, you can also access the attributes and operations which it
exposes via JMX. Look at the main JMX Console view again and you’ll find a separate “jboss.mq.des-
tination” section which should contain an entry for our Queue (no matter how it was created). Click on
this and you’ll see the attributes for the queue. Amongst these is the “QueueDepth” which is the number
of messages which are currently on the queue.

As an excercise, you can try temporarily stopping the delivery of messages to the MDB. Locate the sec-
tion called “jboss.j2ee” in the JMX console and you should find an MBean listed there which is respon-
sible for invoking your MDB. The name should be something like
binding=message-driven-bean,jndiName=local/SimpleMessageEJB,plugin=invoker,service=EJB

1. We’ve adopted the standard JBoss convention of binding queues under the JNDI name “queue” and topics under
“topic” but this isn’t necessary. You can use any name.
Managing JMS Destinations 34

http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=jboss.mq%3Aservice%3DDestinationManager

JMS and Message-Driven Beans
and you can start and stop the delivery of messages using the corresponding MBean operations which it
supports.

Then run the client a few times and monitor the queue depth as the messages accumulate. If you re-start
message delivery you should see all the messages arriving at once.
Managing JMS Destinations 35

CHAPTER 6 Container-Managed
Persistence
Getting Started with
The Duke’s Bank application which we saw in Chapter 4 uses bean-managed
persistence (BMP). However, the improvements to container-managed persist-
ence (CMP) introduced in the EJB 2.0 specification make it unlikely that you
would use BMP in practice. In this chapter we’ll look at the “RosterApp” exam-
ple application from the J2EE tutorial which covers the use of container-managed
persistence and relationships. You should read through the CMP tutorial notes
before proceeding so that you have a good overview of the beans and their rela-
tionships.

You’ll find the code in j2eetutorial/examples/src/ejb/cmproster. The application
implements a player roster for sports’ teams playing in leagues. There are three
entity beans PlayerEJB, TeamEJB and LeagueEJB and a single session bean,
RosterEJB, which manipulates them and provides the business methods accessed
by the client application. Only the session bean has a remote interface.

6.1. Building the Example
The EJBs are packaged in two separate jar files, one for the entity beans and one
for the session bean. As before, we’ve provided a ejb-jar.xml files for each one.
You don’t need a jboss.xml file for this example – all the CMP information
 JBoss 36

Container-Managed Persistence
needed to build the database schema is included in the standard descriptor. We’ll look at JBoss-specific
customization later.

6.1.1. Compiling the Code
Make sure you’re in the examples directory. Running the following command should compile all the
code in one go:

ant -f jboss-build.xml compile-cmp

6.1.2. Packaging the Jars
Run the following command to build the “team” jar file which contains the entity beans:
ant -f jboss-build.xml package-team

Then build the “roster” jar with:

ant -f jboss-build.xml package-roster

Both jar files will be created in the jar directory. Build the client jar using

ant -f jboss-build.xml package-roster-client

Finally assemble the “RosterApp” EAR using the command:

ant -f jboss-build.xml assemble-roster

6.2. Deploying and Running the Application
Copy the RosterApp.ear file from the jar directory to the JBoss deploy directory (or run ant with the
“deploy-cmp” target) and check the output from the server:

19:55:49,138 INFO [MainDeployer] Starting deployment of package: file:/F:/servers/
jboss-3.2.3/server/default/deploy/RosterApp.ear
19:55:49,153 INFO [EARDeployer] Init J2EE application: file:/F:/servers/jboss-3.2.3/
server/default/deploy/RosterApp.ear
19:55:49,731 INFO [EjbModule] Deploying RosterEJB
19:55:50,153 INFO [EjbModule] Deploying PlayerEJB
19:55:50,216 INFO [EjbModule] Deploying TeamEJB
19:55:50,216 INFO [EjbModule] Deploying LeagueEJB
19:55:52,919 INFO [StatefulSessionInstancePool] Started jboss.j2ee:jndiName=Ros-
terEJB,plugin=pool,service=EJB
19:55:52,919 INFO [StatefulSessionFilePersistenceManager] Started null
19:55:52,919 INFO [StatefulSessionContainer] Started jboss.j2ee:jndiName=Ros-
terEJB,service=EJB
Deploying and Running the Application 37

Container-Managed Persistence
19:55:52,935 INFO [EjbModule] Started jboss.j2ee:module=roster-ejb.jar,service=Ejb-
Module
19:55:52,935 INFO [EJBDeployer] Deployed: file:/F:/servers/jboss-3.2.3/server/
default/tmp/deploy/tmp17622RosterApp.ear-contents/roster-ejb.jar
19:55:53,653 INFO [EntityInstancePool] Started jboss.j2ee:jndiName=local/Play-
erEJB,plugin=pool,service=EJB
19:55:53,653 INFO [EntityContainer] Started jboss.j2ee:jndiName=local/PlayerEJB,serv-
ice=EJB
19:55:53,685 INFO [EntityInstancePool] Started jboss.j2ee:jndiName=local/
TeamEJB,plugin=pool,service=EJB
19:55:53,685 INFO [EntityContainer] Started jboss.j2ee:jndiName=local/TeamEJB,serv-
ice=EJB
19:55:54,622 INFO [TeamEJB] Created table 'TEAMEJB' successfully.
19:55:54,669 INFO [PlayerEJB] Created table 'PLAYEREJB' successfully.
19:55:54,669 INFO [PlayerEJB] Created table 'TEAMEJB_PLAYERS_PLAYEREJB_TEAMS' suc-
cessfully.
19:55:54,966 INFO [LeagueEJB] Created table 'LEAGUEEJB' successfully.
19:55:54,966 INFO [EntityInstancePool] Started jboss.j2ee:jndiName=local/
LeagueEJB,plugin=pool,service=EJB
19:55:54,966 INFO [EntityContainer] Started jboss.j2ee:jndiName=local/LeagueEJB,serv-
ice=EJB
19:55:54,966 INFO [EjbModule] Started jboss.j2ee:module=team-ejb.jar,service=EjbMod-
ule
19:55:54,966 INFO [EJBDeployer] Deployed: file:/F:/servers/jboss-3.2.3/server/
default/tmp/deploy/tmp17622RosterApp.ear-contents/team-ejb.jar
19:55:54,997 INFO [EARDeployer] Started J2EE application: file:/F:/servers/jboss-
3.2.3/server/default/deploy/RosterApp.ear
19:55:54,997 INFO [MainDeployer] Deployed package: file:/F:/servers/jboss-3.2.3/
server/default/deploy/RosterApp.ear

There are a few things worth noting here. In the Duke’s Bank application, we specified the JNDI name
we wanted a particular EJBHome reference to be bound under in the jboss.xml file. Without that infor-
mation JBoss will default to using the EJB name. So the session bean is bound under “RosterEJB” and
so on. You can check these in the jmx-console as before. You will also see that the database tables have
been automatically created – there is one for each entity bean and an additional join table to handle the
many-to-many relationship between players and teams. There is no standard naming convention for
either table names or columns but if you take a look at the database schema as we did before (See “The
HSQL Database Manager Tool” on page 23.), you can see that the columns are named after the corre-
sponding fields. This behaviour can be customized (to match an existing schema, for example) by sup-
plying a jbosscmp-jdbc.xml file.

Note that if you increase the logging level for the org.jboss.ejb.plugins.cmp package (See “Logging
Service” on page 9.) to DEBUG, the engine will log the SQL commands which it is executing. This can
be useful in understanding how the engine works and how the various tuning parameters affect the load-
ing of data (see below).
Deploying and Running the Application 38

Container-Managed Persistence
6.2.1. Running the Client

The client performs some data creation and retrieval operations via the session bean interface. It creates
leagues, teams and players which will be inserted into the database (check with the HSQL manager
tool). The session bean methods it calls to retrieve data are mainly wrappers for EJB finder methods.
The command to run the client and the expected output are shown below:

$ ant -f jboss-build.xml run-cmp
Buildfile: jboss-build.xml

run-cmp:
 [java] P10 Terry Smithson midfielder 100.0
 [java] P6 Ian Carlyle goalkeeper 555.0
 [java] P7 Rebecca Struthers midfielder 777.0
 [java] P8 Anne Anderson forward 65.0
 [java] P9 Jan Wesley defender 100.0

 [java] T1 Honey Bees Visalia
 [java] T2 Gophers Manteca
 [java] T5 Crows Orland

 [java] P2 Alice Smith defender 505.0
 [java] P22 Janice Walker defender 857.0
 [java] P25 Frank Fletcher defender 399.0
 [java] P5 Barney Bold defender 100.0
 [java] P9 Jan Wesley defender 100.0

 [java] L1 Mountain Soccer
 [java] L2 Valley Basketball

Note that the client doesn’t remove the data, so if you run it twice it will fail because it tries to create
entities which already exist! If you want to run it again you’ll have to remove the data. The easiest way
to do this (if you’re using HSQL) is to delete the contents of the data/hypersonic directory in the server
configuration you are using (assuming you don’t have any other important data in there!) and restart the
server. We’ve also provided a simple delete SQL script which you can run with the command

ant -f jboss-build.xml db-delete

You could also use SQL commands directly through the HSQL Manager tool to delete the data.

6.3. CMP Customization
There are many ways you can customize the CMP engines’s behaviour by using the jbosscmp-jdbc.xml
file. It is used for basic information such as the datasource name and type-mapping (Hypersonic, Oracle
CMP Customization 39

Container-Managed Persistence
etc.) and whether the database tables should be automatically created on deployment and deleted on
shutdown. You can customize the names of database tables and columns which the EJBs are mapped to
and you can also tune the way in which the engine loads the data depending on how you expect it to be
used. For example, by using the “read-ahead” element you can get it to read and cache blocks of data
for multiple EJBs with a single SQL call, anticipating further access. “Eager-loading” groups can be
specified, meaning that only some fields are loaded initially with the entity; the others are “lazy-loaded”
if and when they are required. The accessing of relationships between EJBs can be tuned using similar
mechanisms. This flexibility is impossible to achieve if you are using BMP where each bean must be
loaded with a single SQL call. If on top of that you include having to write all your SQL and relation-
ship management code by hand then the choice should be obvious. You should rarely, if ever, have to
use BMP in your applications.

The details of tuning the CMP engine are beyond the scope of this document but you can get an idea of
what’s available by examining the DTD (docs/dtd/jbosscmp-jdbc_3_2.dtd) which is well commented.
There is also a standard setup in the conf directory called standardjbosscmp-jdbc.xml which contains
values for the “default” settings and a list of type-mappings for common databases. The beginning of
the file is shown below:
<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/DefaultDS</datasource>
 <datasource-mapping>Hypersonic SQL</datasource-mapping>

 <create-table>true</create-table>
 <remove-table>false</remove-table>
 <read-only>false</read-only>
 <read-time-out>300000</read-time-out>
 <row-locking>false</row-locking>
 <pk-constraint>true</pk-constraint>
 <fk-constraint>false</fk-constraint>
 <preferred-relation-mapping>foreign-key</preferred-relation-mapping>
 <read-ahead>
 <strategy>on-load</strategy>
 <page-size>1000</page-size>
 <eager-load-group>*</eager-load-group>
 </read-ahead>
 <list-cache-max>1000</list-cache-max>
 ...

You can see that, among other things, this sets the datasource and mapping for use with the embedded
Hypersonic database and sets table-creation to “true” and removal to “false” (so the schema will be cre-
ated if it doesn’t already exist). The “read-only” and “read-time-out” elements specify whether data
should be read-only and the time in milliseconds it is valid for. Note that many of these elements can be
used at different granularities such as per-entity or even on a field-by-field basis (consult the DTD for
details). The read-ahead element uses an “on-load” strategy which means that the EJB data will be
loaded when it is accessed (rather than when the finder method is called) and the “page-size” setting
means that the data for up to 1000 entities will be loaded with one SQL command. You can override this
either in your own jbosscmp-jdbc.xml file’s list of default settings or by adding the information to a spe-
cific query configuration in the file.
CMP Customization 40

Container-Managed Persistence
A comprehensive explanation of the CMP engine and its various loading strategies can be found in the
full JBoss Admin. and Development Guide (See Table 1 on page 17).

6.3.1. XDoclet
Writing and maintaining deployment descriptors is a labour-intensive and error-prone job at the best of
times and detailed customization of the CMP engine can lead to some large and complex files. If you
are using CMP (or indeed EJBs) in anger then it is worth getting to grips with the XDoclet code gener-
ation engine (http://xdoclet.sourceforge.net). Using Javadoc-style attribute tags in your code it will gen-
erate the deployment descriptors for you as well as the EJB interfaces and other artifacts if required. It
fully supports JBoss CMP and though the learning curve is quite steep and a bit much when you’re try-
ing to get to grips with the basics, its use is thoroughly recommended (almost essential in fact) for real
projects.
CMP Customization 41

http://xdoclet.sourceforge.net/

CHAPTER 7 Web Services with
JBoss.Net
Getting Started with
Web services are all the rage these days. By transmitting XML data using plat-
form and language-independent protocols (e.g. SOAP over HTTP), the aim is to
achieve genuine interoperability, based on clearly-defined standards. Web serv-
ices are a required part of the J2EE 1.4 specification. There is a lot to learn (start-
ing with a whole pile of new acronyms) so if you’re not already familiar with the
subject, we would recommend you do some reading in advance. A good place to
start would be the JBoss.Net documentation on the JBoss web site, which provides
an excellent overview and links to other sources of information. Another good
source of reference material is the Apache Web Services Project web site at

http://ws.apache.org.

7.1. JBoss.net

JBoss.Net is the JBoss module responsible for providing web services. It is built
around the Apache Axis SOAP implementation (http://ws.apache.org/axis) and is
intended to provide integration with J2EE and JMX. It introduces a new archive
type – the web service archive (WSR) – which allows you to package and deploy
your web services in a similar fashion to standard J2EE modules, taking advan-
tage of the JBoss hot-deployment mechanism.
 JBoss 42

http://www.jboss.org/index.html?module=html&op=userdisplay&id=developers/projects/jboss/dotnet
http://ws.apache.org
http://ws.apache.org/axis

Web Services with JBoss.Net
The JBoss.Net service is included in the “all” server configuration, not the “default” one which we’ve
been using up until now. It’s implemented by the expanded JBoss service archive, jboss-net.sar, in the
deploy directory. To make it available, you have to start JBoss with the command

run -c all

Alternatively you can move the whole SAR into the default configuration or create your own custom
configuration (See “Server Configurations” on page 7.).

With JBoss.Net it is easy to can expose an EJB as a web service, so we’ll do this, using one of the ses-
sion beans from Duke’s Bank as an example. Make sure you have the latest version of Ant, as some ver-
sions of the version of the Xerces parser which come with it can cause problems. We used Ant 1.5.4
(which contains Xerces 2.5) without any problems.

7.2. Duke’s Bank as a Web Service
It’s really very straightforward to make your EJB available as a web service. If you haven’t already
worked through the Duke’s Bank example, then you should do that first. We’ll use the AccountControl-
ler session bean and call the getDetails method which takes a String argument for the accountId and
returns an AccountDetails value object containing the data for that account. So it’s more complicated
than the average “Hello World” example as we have to deserialize the returned object on the client side.
There are two things we have to do, assuming you already have the application deployed. We have to
write and deploy a WSR file containing the descriptor for the web service, and we have to write a client.

7.2.1. The Web Service Archive (WSR) File
The WSR file is just a standard Jar archive with a .wsr extension and a META-INF/web-service.xml file.
The latter is a standard Axis descriptor (WSDD file). You can read more on this in the Axis documenta-
tion. If you’ve unpacked the supplementary JBoss files for the J2EE tutorial, you’ll find the file in the
bank/dd directory.
<deployment
 name="Bank"
 xmlns="http://xml.apache.org/axis/wsdd/"
 targetNamespace="http://net.jboss.org/bank"
 xmlns:bank="http://net.jboss.org/bank"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<!-- AccountController Session bean exposed as a web service -->
 <service name="AccountController" provider="Handler">
 <parameter name="handlerClass" value="org.jboss.net.axis.server.EJBProvider"/>
 <parameter name="beanJndiName" value="MyAccountController"/>
 <parameter name="allowedMethods" value="getAccountsOfCustomer getDetails"/>
 </service>
Duke’s Bank as a Web Service 43

Web Services with JBoss.Net
<!-- Type-mapping for the AccountDetails value object. -->
 <beanMapping qname="bank:AccountDetails"
 languageSpecificType="java:com.sun.ebank.util.AccountDetails"/>

</deployment>

From the listing, you can see how the <service> tag is used to expose the bean is exposed as the web
service “AccountController”. This obviously doesn’t have to be the same as the bean name – the bean is
specified by the beanJndiName parameter. The org.jboss.net.axis.server.EJBProvider class, which is an
extension of the corresponding Axis EJBProvider, is responsible for handling the details. The allowed-
Methods parameter defines which EJB methods should be exposed by the service.

The final beanMapping element specifies that the AccountDetails object should be treated as a Java bean
which means that the (de)serialization to and from SOAP messages will be handled by the Axis bean
serialization classes. An alternative is to use the typeMapping element to set up custom serialization and
deserialization.

To make com.sun.ebank.util.AccountDetails into a valid Javabean class, we have to add a default con-
structor:
 public AccountDetails() { }

or it won’t be possible for the client to create the return object from the SOAP message. So you should
do this and then recompile and deploy Duke’s Bank before proceeding. Make sure you deploy it into the
correct server configuration! For example, if you’ve been running the “default” configuration until now,
but have switched to “all” to enable Web Services, then you must obviously place the EAR file in the
JBOSS_DIST/server/all/deploy directory. You can do a sanity check by browsing to the web applica-
tion.

7.2.2. Building and Deploying the WSR File
If you run the command

ant -f jboss-build.xml wsr

from the bank directory, this should produce the WSR file in the Jar directory. You can then copy the
file to the deploy directory (make sure you copy it to the server configuration you are running). You
should see a short message in the server console to say it has deployed the archive. Duke’s Bank must
be deployed prior to this or you’ll get a ClassNotFoundException for AccountDetails. An alternative
approach, which you would probably adopt in practice, would be to add the WSR file to the EAR and
deploy everything as a single unit.

Once the service is deployed you can view the WSDL (Web Service Description Language) for it by
browsing to to the URL http://localhost:8080/jboss-net/services/AccountController?wsdl
Duke’s Bank as a Web Service 44

http://localhost:8080/jboss-net/services/AccountController?wsdl

Web Services with JBoss.Net
This description of the service interface is the web service equivalent of IDL in CORBA. In this exam-
ple it is generated for us but it is also possible to write the WSDL for the service and then compile code
for it using a tool such as wsdl2java (which comes with Axis).

7.2.3. Running the Client
We’ve also supplied a Java client and an ant task to run it.
import org.apache.axis.client.Call;
import org.apache.axis.client.Service;
import com.sun.ebank.util.AccountDetails;
import javax.xml.namespace.QName;

public class WSClient
{
 public static void main(String [] args) throws Exception
 {
 String endpoint = "http://localhost:8080/jboss-net/services/AccountController";
 Service service = new Service();
 Call call = (Call) service.createCall();
 call.setTargetEndpointAddress(new java.net.URL(endpoint));
 call.setOperationName("getDetails");
 call.setReturnClass(AccountDetails.class);
 QName qn = new QName("http://net.jboss.org/bank","AccountDetails");
 call.registerTypeMapping(AccountDetails.class, qn,
 new org.apache.axis.encoding.ser.BeanSerializerFactory(AccountDetails.class, qn),
 new org.apache.axis.encoding.ser.BeanDeserializerFactory(AccountDetails.class, qn));

 AccountDetails ret = (AccountDetails) call.invoke(new Object[] { "5005" });
 System.out.println(ret.getDescription() + ", " + ret.getType());
 }
}

The client uses the JAXRPC Call interface to invoke the service dynamically, rather than using stub
code compiled from the WSDL. It specifies the method to be invoked using call.setOperationName and
then uses call.registerTypeMapping to define how the returned object should be handled (the latter is an
Axis-specific method and we again use the Axis bean-(de)serialization facilities).

7.2.4. Net Traffic Analysis
Axis comes with some useful utilities for monitoring your web service traffic. The “TCPMonitor” tool
act as a TCP tunnel for connections between the client and server: it listens on one port for client con-
nections, forwarding client requests to the server and returning responses on the client. From this “man-
in-the-middle” position it will print out all the traffic in both directions, so you can use it to view HTTP
headers, SOAP messages or anything else you want to pass over a TCP connection. There’s nothing
specific to web services involved. There’s an additional target in the build file to run the tool:

ant -f jboss-build.xml tcpmon
Duke’s Bank as a Web Service 45

Web Services with JBoss.Net
which will pop up the initial configuration window. You can check the Axis user guide for details on
using this but it just involves specifying a local port to listen on (we chose 7070) and the information for
the host and port to forward to (the defaults are “localhost” and “8080” respectively, so you shouldn’t
need to change them). You then have to modify the client to connect to the new port and recompile. You
can then run the client and view the output:

FIGURE 7.1. TCPMon output of Web Services Call
Duke’s Bank as a Web Service 46

Web Services with JBoss.Net
You can also make changes to the request message and resend it, making TCPMon a useful debugging
tool as well.
Duke’s Bank as a Web Service 47

CHAPTER 8 Using other
Databases
Getting Started with
In the previous chapters, we’ve just been using the JBoss default datasource in
our applications. This is provided by the embedded HSQL database instance and
is bound to the JNDI name “java:/DefaultDS”. Having a database included with
JBoss is very convenient for running examples and HSQL is adequate for many
purposes. However, at some stage you will want to use another database, either to
replace the default datasource or to access multiple databases from within the
server.

8.1. DataSource Configuration
Database connection management in JBoss is entirely handled by the JCA imple-
mentation. So all databases are accessed via JCA resource adapters which handle
connection pooling, security and transactions.

8.1.1. JDBC-Wrapper Resource Adapters

If there is no proprietary adapter for the database in question then you can config-
ure it to use one of the two JDBC-wrapper resource adapters which we men-
tioned when we were looking at the various services deployed in JBoss (See
“Additional Services” on page 11). Obviously you need a JDBC driver for this to
 JBoss 48

Using other Databases
work and the classes have to be made available (by copying the driver jar or zip file to the lib directory
of the server configuration you are working with). The main distinction between different datasource
configurations is whether they are set up to use the local or XA-transaction JDBC adapters. The latter
option is only available if the JDBC driver in question provides an implementation of javax.sql.XAData-
Source

1 but you can still choose the local option even if an XADataSource implementation is available
(see the two oracle configuration files for example). There is also a “no-transaction” configuration but
you would rarely use this with a database.

8.1.2. DataSource Configuration Files
DataSource configuration file names end with the suffix “-ds.xml” so that they will be recognised cor-
rectly by the JCA deployer. The docs/example/jca directory contains sample files for a wide selection of
databases and it is a good idea to use one of these as a starting point. For a full description of the config-
uration format the best place to look is the DTD file docs/dtd/jboss-ds_1_0.dtd. Additional documenta-
tion on the files and the JBoss JCA implementation can also be found in the JBoss Admin. and
Development Guide.

Local-transaction datasources are configured using the <local-tx-datasource> element and XA-compli-
ant ones using <xa-tx-datasource>. The example file generic-ds.xml shows how to use both types and
also some of the other elements that are available for things like connection-pool configuration. Exam-
ples of both local and XA configurations are available for Oracle, DB2 and Informix.

If you look at the example files firebird-ds.xml, facets-ds.xml and sap3-ds.xml, you’ll notice that they
have a completely different format, with the root element being <connection-factories> rather than
<datasources>. These use an alternative, more generic JCA configuration syntax used with a pre-pack-
aged JCA resource adapter. As we mentioned in “Additional Services” on page 11, the syntax is not
specific to datasource configuration and is used, for example, in the jms-ds.xml file to configure the
JMS resource adapter.

8.2. Examples
We’ll work through some step-by-step examples to illustrate what’s involved.

8.2.1. Using MySQL as the Default DataSource
MySQL is a one of the most popular open source databases around and is used by many prominent
organizations from Yahoo to NASA. The official JDBC driver for it is called “Connector/J”. For this

1. The local and XA transaction contracts are discussed in chapter 7 of the JCA 1.5 Specification.
Examples 49

Using other Databases
example we’ve used MySQL 4.0.13 and Connector/J 3.0.9 on Windows XP. You can download them
both from http://www.mysql.com.

8.2.1.1 Creating a Database and User

We’ll assume that you’ve already installed MySQL and that you have it running and are familiar with
the basics. Run the mysql client program from the command line so we can execute some administra-
tion commands. You should make sure that you are connected as a user with sufficient privileges (e.g.
by specifying the “-u root” option to run as the MySQL “root” user).

First create a database called “jboss” within MySQL for use by JBoss

mysql> CREATE DATABASE jboss;
Query OK, 1 row affected (0.05 sec)

and check that it has been created using

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| jboss |
| mysql |
| test |
+----------+
3 rows in set (0.00 sec)

Then create a user called “jboss” with password “password” to access the database

mysql> GRANT ALL PRIVILEGES ON jboss.* TO jboss@localhost IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.06 sec)

and again check that everything has gone smoothly

mysql> select User,Host,Password from mysql.User;
+-------+-----------+------------------+
| User | Host | Password |
+-------+-----------+------------------+
root	localhost	
root	%	
	localhost	
	%	
jboss	localhost	5d2e19393cc5ef67
+-------+-----------+------------------+
5 rows in set (0.02 sec)
Examples 50

http://www.mysql.com

Using other Databases
8.2.1.2 Installing the JDBC Driver and Deploying the DataSource
To make the JDBC driver classes available to JBoss, copy the file mysql-connector-java-3.0.9-stable-
bin.jar from the Connector/J distribution to the lib directory in the default server configuration (assum-
ing you’re running this one, of course). Then create a file called mysql-ds.xml with the following data-
source configuration:
<datasources>
 <local-tx-datasource>
 <jndi-name>DefaultDS</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/jbossdb</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>jboss</user-name>
 <password>password</password>
 </local-tx-datasource>
</datasources>

which mirrors the database and user information we set up in the previous section. Our aim here is to
replace the default datasource in JBoss with a MySQL version, so you have to remove the existing
hsqldb-ds.xml from the deploy directory or there will be a conflict between the JNDI names of the two
datasources. Copy the new file in its place and start JBoss.

You may notice some exceptions during JMS startup and error messages about SQL syntax. This is
because the message persistence manager uses SQL subqueries (nested select statements) which have
been introduced in MySQL 4.1 (which is still in alpha release). There are alternative service files for
use with MySQL and other databases in the examples/jms directory2.

8.2.1.3 Testing the MySQL DataSource
We’ll use the CMP “roster” application. The only change that has to be made is to change the type-map-
ping from “Hypersonic” to “MySQL”. You can either do this by adding a jbosscmp-jdbc.xml to the EJB
deployment or modify the global default settings in conf/standardjbosscmp-jdbc.xml. The latter
approach is simpler, as you don’t have to re-package the application. The disadvantage is that you have
to restart JBoss for the changes to take place. Edit the file and change the datasource-mapping element to
“mySQL”:
<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/DefaultDS</datasource>
 <datasource-mapping>mySQL</datasource-mapping>

2. The file for MySQL is mysql-jdbc2-service.xml. Make sure you don’t use the “mssql” one by mistake. Replace
the occurrence of “MySqlDS” with “DefaultDS” and replace the file jms/hsql-jdbc2-service.xml in the deploy
directory with this one.
Examples 51

Using other Databases
After restarting JBoss, you should be able to deploy the application and see the tables being created as
we did in “Deploying and Running the Application” on page 37. The tables should be visible from the
MySQL client:

mysql> show tables;
+---------------------------------+
| Tables_in_jboss |
+---------------------------------+
| jms_messages |
| jms_transactions |
| leagueejb |
| playerejb |
| teamejb |
| teamejb_players_playerejb_teams |
+---------------------------------+
6 rows in set (0.00 sec)

You can see the JMS persistence tables in there too, since we’re using MySQL as the default data-
source.

8.2.2. Setting up an XADataSource with Oracle 9i
Oracle is one of the main players in the commercial database field and most readers will probably have
come across it at some point. You can download it freely for non-commercial purposes from

http://www.oracle.com.

Installing and configuring Oracle is not for the faint of heart – it isn’t really just a simple database but is
heavy on extra features and technologies which you may not actually want (another Apache web server,
multiple JDKs, Orbs etc.) but which are usually installed anyway. So we’ll assume you already have an
Oracle installation available – for this example, we’ve used Oracle 9.2.0.1 for Linux3.

8.2.2.1 Padding Xid Values for Oracle Compatibility
If you look in the jboss-service.xml file in the default/conf directory, you’ll find the following service
MBean.
 <!-- The configurable Xid factory. For use with Oracle, set pad to true -->
 <mbean code="org.jboss.tm.XidFactory"
 name="jboss:service=XidFactory">
 <!--attribute name="Pad">true</attribute-->
 </mbean>

3. If you are installing on Linux and are using Redhat, you have to tweak the installation a bit as it won’t work out
of the box. Read the article linked to from Oracle’s web site and make sure you have plenty of spare time.
Examples 52

http://www.oracle.com

Using other Databases
The transaction service uses this to create XA transactions identifiers. The comment explains the situa-
tion: for use with Oracle you have to include the line which sets the attribute “Pad” to “true”. This acti-
vates padding the identifiers out to their maximum length of 64 bytes. Remember that you’ll have to
restart JBoss for this change to be put into effect, but wait until you’ve installed the JDBC driver classes
which we’ll talk about next.

8.2.2.2 Installing the JDBC Driver and Deploying the DataSource

The Oracle JDBC drivers can be found in the directory $ORACLE_HOME/jdbc/lib. Older versions,
which may be more familiar to some users, had rather uninformative names like “classes12.zip” but at
the time of writing the latest driver version can be found in the file ojdbc14.jar. There is also a debug
version of the classes with “_g” appended to the name which may be useful if you run into problems.
Again, you should copy one of these to the lib directory of the JBoss default configuration. The basic
driver class you would use for the non-XA setup is called oracle.jdbc.driver.OracleDriver. The XADa-
taSource class, which we’ll use here, is called oracle.jdbc.xa.client.OracleXADataSource.

For the configuration file, make a copy of the oracle-xa-ds.xml example file and edit it to set the correct
URL, username and password:
<datasources>
 <xa-datasource>
 <jndi-name>XAOracleDS</jndi-name>
 <track-connection-by-tx>true</track-connection-by-tx>
 <isSameRM-override-value>false</isSameRM-override-value>
 <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
 <xa-datasource-property name="URL">jdbc:oracle:thin:@monkeymachine:1521:jboss
 </xa-datasource-property>
 <xa-datasource-property name="User">jboss</xa-datasource-property>
 <xa-datasource-property name="Password">password</xa-datasource-property>
 <exception-sorter-class-name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
 </exception-sorter-class-name>
 <no-tx-separate-pools/>
 </xa-datasource>

 <mbean code="org.jboss.resource.adapter.jdbc.xa.oracle.OracleXAExceptionFormatter"
 name="jboss.jca:service=OracleXAExceptionFormatter">
 <depends
 optional-attribute-name="TransactionManagerService">jboss:service=TransactionManager
 </depends>
 </mbean>
</datasources>

We’ve used the oracle thin (pure java) driver here and assumed the database is running on the host
“monkeymachine” and that the database name (or SID in Oracle terminology) is “jboss”. We’ve also
assumed that you’ve created a user “jboss” with all the sufficient privileges. You can just use “dba”
privileges for this example:

[oracle@monkeymachine oradata]$ sqlplus /nolog
SQL*Plus: Release 9.2.0.1.0 - Production on Sun Nov 9 23:11:25 2003
Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.
Examples 53

Using other Databases
SQL> connect / as sysdba
Connected.
SQL> create user jboss identified by password;
User created.
SQL> grant dba to jboss;
Grant succeeded.

Now copy the file to the deploy directory. You should get the following output:

21:11:00,046 INFO [MainDeployer] Starting deployment of package: file:/F:/servers/
jboss-3.2.2/server/default/deploy/oracle-xa-ds.xml
21:11:00,171 INFO [RARDeployment] Started jboss.jca:service=ManagedConnectionFac-
tory,name=XAOracleDS
21:11:00,171 INFO [JBossManagedConnectionPool] Started jboss.jca:service=ManagedCon-
nectionPool,name=XAOracleDS
21:11:00,187 INFO [XAOracleDS] Bound connection factory for resource adapter for Con-
nectionManager
'jboss.jca:service=XATxCM,name=XAOracleDS to JNDI name 'java:/XAOracleDS'
21:11:00,187 INFO [TxConnectionManager] Started jboss.jca:service=XATxCM,name=XAOra-
cleDS
21:11:00,234 INFO [OracleXAExceptionFormatter] Started jboss.jca:service=OracleXAEx-
ceptionFormatter
21:11:00,234 INFO [MainDeployer] Deployed package: file:/F:/servers/jboss-3.2.2/
server/default/deploy/oracle-xa-ds.xml

and if you use the JNDIView service from the JMX console as before, you should see the name “java:/
XAOracleDS” listed.

8.2.2.3 Testing the Oracle DataSource
Again we’ll use the CMP example to try out the new DataSource. The jbosscmp-jdbc.xml file should
contain the following:
<jbosscmp-jdbc>
 <defaults>
 <datasource>java:/XAOracleDS</datasource>
 <datasource-mapping>Oracle9i</datasource-mapping>
 </defaults>
</jbosscmp-jdbc>

There are other oracle type-mappings available too – if you’re using an earlier version, have a look in
the conf/standardjbosscmp-jdbc.xml file to find the names. As above, you can also modify the default
values directly in this file which will set them for all CMP deployments and also save you having to re-
package the EAR file.

Deploy the application as before, check the output for errors and then check that the tables have been
created using Oracle SQLPlus again from the command line:
Examples 54

Using other Databases
SQL> select table_name from user_tables;

TABLE_NAME

LEAGUEEJB
PLAYEREJB
TEAMEJB
TEAMEJB_PLAYERS_PLAYE_1TKRO4S
Examples 55

CHAPTER 9 Security
Configuration
Getting Started with
We’ve already seen how to set up simple security when we looked at the Duke’s
Bank application (See “Security” on page 26.). We looked at how to enable secu-
rity by adding a security domain element to the jboss-specific deployment
descriptors and thus linking your application to a configuration in the login-con-
fig.xml file. However we only used simple file based security in that chapter.

In this chapter, we’ll examine some more advanced configuration options and
find out how to use some of the other login modules that are available.

9.1. Security Using a Database
One of the most likely scenarios is that your user and role information is stored
and maintained in a database. JBoss comes with a login module called Database-
ServerLoginModule which just needs some simple configuration options to set it
up. You need to supply

• the SQL query to retrieve the password for a specified user.
• the query to retrieve a user’s roles.
• the JNDI name of the DataSource to be used.
 JBoss 56

Security Configuration
This gives you the flexibility to use an existing database schema. Let’s suppose that the security data-
base tables were created using the following SQL

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

then to use this as the security database for Duke’s Bank, you would modify the “dukesbank” entry in
the JBoss login-config.xml file as follows:

<application-policy name="dukesbank">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag="required">
 <module-option name="dsJndiName">java:/DefaultDS</module-option>
 <module-option name="principalsQuery">
 select passwd from Users where username=?
 </module-option>
 <module-option name="rolesQuery">
 select userRoles,'Roles' from UserRoles where username=?
 </module-option>
 </login-module>
 </authentication>
</application-policy>

The query to retrieve the password is straightforward. In the case of the roles query you will notice that
there is an additional field with value “Roles” which is the “role group”. This allows you to store addi-
tional roles (for whatever purpose) classified by the role group. The ones which will affect JBoss per-
missions are expected to have the value “Roles”. In this simple example we only have a single set of
roles in the database and no role group information1.

We’ve used the default DataSource here. If you’re using Hypersonic, then you can easily create the
tables and insert some data using the Database Manager tool which we also used in the Duke’s Bank
chapter. Just execute the two commands above and then the following ones to insert the information for
the user with customer Id “200” :
INSERT INTO Users VALUES(‘200’,’j2ee’)
INSERT INTO UserRoles VALUES(‘200’,’BankCustomer’)

and you should be able to login as before.

1. You can also use the default schema which is to have a table called “Principals” with columns “PrincipalID” and
“Password” and a table called “Roles” with columns “PrincipalID”, “Role” and “RoleGroup”. In this case you
don’t have to specify the SQL queries for the login module. The RoleGroup entries for JBoss permissions
should be set to the value “Roles” as before.
Security Using a Database 57

Security Configuration
9.2. Using Password Hashing
The login modules we’ve used so far all have support for password hashing; rather than storing pass-
words in plain text, a one-way hash of the password is stored (using an algorithm such as MD5), in a
similar fashion to the passwd file on a Unix system. This has the advantage that anyone reading the
hash won’t be able to use it to log in. However there is no way of recovering the password should the
user forget it and it also makes administration slightly more complicated because you also have to cal-
culate the password hash yourself to put it in your security database. This isn’t a major problem though.
To enable password hashing in the database example above, you would add the following module
options to the configuration

 <module-option name="hashAlgorithm">MD5</module-option>
 <module-option name="hashEncoding">base64</module-option>

This indicates that we want to use MD5 hashes and use Base64 encoding to covert the binary hash value
to a string. JBoss will now calculate the hash of the supplied password using these options before
authenticating the user, so it’s important that we store the correctly hashed information in the database.
If you’re on a Unix system or have Cygwin installed on Windows you can use the following command:

$ echo -n "j2ee" | openssl dgst -md5 -binary | openssl base64
glcikLhvxq1BwPBZN0EGMQ==

and insert the string “glcikLhvxq1BwPBZN0EGMQ==” into the database in place of the password “j2ee”. If
you don’t have this option, you can use the class org.jboss.security.Base64Encoder which you’ll find in
the jbosssx.jar file.

$ java -classpath ./jbosssx.jar org.jboss.security.Base64Encoder j2ee MD5
[glcikLhvxq1BwPBZN0EGMQ==]

With a single argument it will just encode the given string but if you supply the name of a digest algo-
rithm as a second argument it will calculate the hash of the string first.
Using Password Hashing 58

APPENDIX A The Web Console
Getting Started with
Throughout this book we have been referring to the JMX Console web applica-
tion which you can view by browsing to http://localhost:8080/jmx-console. How-
ever there is also a new management console application which extends the
functionality to include statistics on deployed J2EE components such as EJBs
and servlets.

The URL for the web console is http://localhost:8080/web-console. You will get
more out of it if you have some applications deployed and been running them to
accumulate some statistics. For example, with the Duke’s Bank application
deployed you’ll see something like Figure A.1, which shows the statistics for the
AccountController stateful session bean. The invocation statistics are self-
explanatory; you have a list of methods and the max, min, average time per invo-
cation as well as the total time spent in the method and the number of invoca-
tions. The number of concurrent invocations is shown underneath the table of
methods.

The information in the “Bean Statistics” section shows information on the bean
instance numbers. The details vary depending on the type of bean and the possi-
ble values are shown in Table 1 on page 60. For a complete description of the
bean states (“method-ready”, “pooled”, “ready” etc.) see the EJB specification.
 JBoss 59

http://localhost:8080/jmx-console
http://localhost:8080/jmx-console
http://localhost:8080/web-console

FIGURE A.1. Web Admin. Console Showing Stateful Session Bean Statistics.

TABLE 1. Bean Statistics Data

Stateless Session Bean Description

MethodReadyCount Number of beans in the “method-ready” state.

CreateCount Number of times create method has been called.

RemoveCount Number of times remove method has been called.

Stateful Session Bean

MethodReadyCount The number of beans in the “method-ready” state.

CreateCount The number of beans that have been created
60

The web-console isn’t a pure web application but uses a Java applet for the tree view on the left-hand
side. So you’ll need to have the Java plugin installed and have Java enabled to make it work.

RemoveCount The number of beans that have been explicitly removeda.

PassiveCount The number of beans that have been passivated by the container.

Entity Bean

CreateCount Number of entities that have been created by calls to create
method.

RemoveCount Number of entities that have been removed (deleted) by calling
remove method.

ReadyCount Number of beans that are in the “ready” state - assigned an entity
object and ready to handle invocations.

PooledCount Number of beans in the “pooled” state. JBoss doesn’t use entity
instance pooling so this will be zero.

a. Note that RemoveCount may not equal CreateCount over time as the beans may be passivated
and then time-out without the remove method being called.

TABLE 1. Bean Statistics Data
61

JBoss Admin Development Guide

JBoss 3.2.6

Copyright © 2004 JBoss, Inc.

Table of Contents
Forward .. ix
About Open Source .. x
About JBoss .. xi

1. JBoss: A Full J2EE Implementation with JMX .. xi
2. What this Book Covers .. xii

1. Installing and Building the JBoss Server ... 1
1.1. Getting the Binary Files .. 1

1.1.1. Prerequisites ... 1
1.1.2. Installing the Binary Package ... 2

1.1.2.1. Directory Structure ... 2
1.1.3. The Default Server Configuration File Set ... 3

1.2. Basic Installation Testing .. 7
1.3. Booting from a Network Server ... 9
1.4. Building the Server from Source Code ... 12

1.4.1. Accessing the JBoss CVS Repositories at SourceForge .. 12
1.4.2. Understanding CVS ... 12
1.4.3. Anonymous CVS Access ... 12
1.4.4. Obtaining a CVS Client ... 13
1.4.5. Building the JBoss 3.2.6 Distribution Using the Source Code 13
1.4.6. Building the JBoss 3.2.6 Distribution Using the CVS Source Code 13
1.4.7. An Overview of the JBoss CVS Source Tree ... 14
1.4.8. Using the JBossTest unit testsuite ... 15

2. The JBoss JMX Microkernel ... 18
2.1. JMX .. 18

2.1.1. An Introduction to JMX ... 19
2.1.1.1. Instrumentation Level ... 20
2.1.1.2. Agent Level ... 20
2.1.1.3. Distributed Services Level ... 21
2.1.1.4. JMX Component Overview ... 21

2.2. JBoss JMX Implementation Architecture ... 24
2.2.1. The JBoss ClassLoader Architecture ... 24
2.2.2. Class Loading and Types in Java .. 24

2.2.2.1. ClassCastExceptions - I'm Not Your Type .. 25
2.2.2.2. IllegalAccessException - Doing what you should not 29
2.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are 30
2.2.2.4. Inside the JBoss Class Loading Architecture ... 36

2.2.3. JBoss XMBeans .. 42
2.2.3.1. Descriptors ... 43
2.2.3.2. The Management Class ... 45
2.2.3.3. The Constructors .. 45
2.2.3.4. The Attributes .. 46
2.2.3.5. The Operations ... 47
2.2.3.6. Notifications ... 48

2.3. Connecting to the JMX Server .. 50
2.3.1. Inspecting the Server - the JMX Console Web Application 50

2.3.1.1. Securing the JMX Console .. 52
2.3.2. Connecting to JMX Using RMI .. 54
2.3.3. Command Line Access to JMX .. 59

ii

2.3.3.1. Connecting twiddle to a Remote Server .. 60
2.3.3.2. Sample twiddle Command Usage .. 60

2.3.4. Connecting to JMX Using Any Protocol ... 63
2.4. Using JMX as a Microkernel ... 63

2.4.1. The Startup Process ... 63
2.4.2. JBoss MBean Services ... 65

2.4.2.1. The SARDeployer MBean ... 65
2.4.2.2. The Service Life Cycle Interface .. 69
2.4.2.3. The ServiceController MBean ... 69
2.4.2.4. Specifying Service Dependencies .. 71
2.4.2.5. Identitifying Unsatisfied Dependencies .. 72
2.4.2.6. Hot Deployment of Components, the URLDeploymentScanner 72

2.4.3. Writing JBoss MBean Services .. 74
2.4.3.1. A Standard MBean Example ... 74
2.4.3.2. XMBean Examples ... 79

2.4.4. Deployment Ordering and Dependencies .. 94
2.5. JBoss Deployer Architecture ... 103

2.5.1. Deployers and ClassLoaders .. 106
2.6. Exposing MBean Events via SNMP .. 108

2.6.1. The SNMP Adaptor Service ... 108
2.6.2. The Event to Trap Service .. 109

2.7. Remote Access to Services, Detached Invokers .. 109
2.7.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service 113
2.7.2. Detached Invoker Reference .. 117

2.7.2.1. The JRMPInvoker - RMI/JRMP Transport ... 117
2.7.2.2. The PooledInvoker - RMI/Socket Transport ... 118
2.7.2.3. The IIOPInvoker - RMI/IIOP Transport ... 119
2.7.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies 119
2.7.2.5. The HttpInvoker - RMI/HTTP Transport .. 119
2.7.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport 120
2.7.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport 120
2.7.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies 120
2.7.2.9. Steps to Expose Any RMI Interface via HTTP .. 121

3. Naming on JBoss .. 123
3.1. An Overview of JNDI .. 123

3.1.1. The JNDI API ... 123
3.1.1.1. Names ... 123
3.1.1.2. Contexts ... 124

3.1.2. J2EE and JNDI - The Application Component Environment 125
3.1.2.1. ENC Usage Conventions ... 126

3.2. The JBossNS Architecture .. 140
3.2.1. The Naming InitialContext Factories .. 142

3.2.1.1. Naming Discovery in Clustered Environments .. 143
3.2.1.2. The HTTP InitialContext Factory Implementation 144
3.2.1.3. The Login InitialContext Factory Implementation 144

3.2.2. Accessing JNDI over HTTP ... 145
3.2.3. Accessing JNDI over HTTPS ... 148
3.2.4. Securing Access to JNDI over HTTP .. 151
3.2.5. Securing Access to JNDI with a Read-Only Unsecured Context 152
3.2.6. Additional Naming MBeans ... 153

3.2.6.1. org.jboss.naming.ExternalContext MBean .. 153
3.2.6.2. The org.jboss.naming.NamingAlias MBean .. 155

JBoss Admin Development Guide

iii

3.2.6.3. The org.jboss.naming.JNDIView MBean ... 155
4. Transactions on JBoss ... 159

4.1. Transaction/JTA Overview ... 159
4.1.1. Pessimistic and optimistic locking .. 160
4.1.2. The components of a distributed transaction .. 160
4.1.3. The two-phase XA protocol ... 161
4.1.4. Heuristic exceptions .. 161
4.1.5. Transaction IDs and branches ... 162

4.2. JBoss Transaction Internals ... 162
4.2.1. Adapting a Transaction Manager to JBoss ... 162
4.2.2. The Default Transaction Manager ... 163

4.2.2.1. org.jboss.tm.XidFactory .. 163
4.2.3. UserTransaction Support .. 164

5. EJBs on JBoss .. 165
5.1. The EJB Client Side View .. 165

5.1.1. Specifying the EJB Proxy Configuration ... 168
5.2. The EJB Server Side View .. 172

5.2.1. Detached Invokers - The Transport Middlemen ... 172
5.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport 176
5.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport ... 176

5.3. The EJB Container ... 177
5.3.1. EJBDeployer MBean ... 177

5.3.1.1. Verifying EJB deployments ... 178
5.3.1.2. Deploying EJBs Into Containers .. 178
5.3.1.3. Container configuration information .. 179

5.3.2. Container Plug-in Framework .. 189
5.3.2.1. org.jboss.ejb.ContainerPlugin .. 190
5.3.2.2. org.jboss.ejb.Interceptor .. 190
5.3.2.3. org.jboss.ejb.InstancePool ... 191
5.3.2.4. org.jboss.ebj.InstanceCache ... 192
5.3.2.5. org.jboss.ejb.EntityPersistenceManager .. 193
5.3.2.6. org.jboss.ejb.StatefulSessionPersistenceManager .. 198

5.4. Entity Bean Locking and Deadlock Detection .. 199
5.4.1. Why JBoss Needs Locking ... 199
5.4.2. Entity Bean Lifecycle .. 199
5.4.3. Default Locking Behavior .. 200
5.4.4. Pluggable Interceptors and Locking Policy .. 200
5.4.5. Deadlock .. 201

5.4.5.1. Dedlock Detection .. 202
5.4.5.2. Catching ApplicationDeadlockException ... 203
5.4.5.3. Viewing Lock Information .. 203

5.4.6. Advanced Configurations and Optimizations ... 203
5.4.6.1. Short-lived Transactions .. 204
5.4.6.2. Ordered Access .. 204
5.4.6.3. Read-Only Beans .. 204
5.4.6.4. Explicitly Defining Read-Only Methods .. 204
5.4.6.5. Instance Per Transaction Policy ... 205

5.4.7. Running Within a Cluster ... 205
5.4.8. Troubleshooting .. 206

5.4.8.1. Locking Behavior Not Working ... 206
5.4.8.2. IllegalStateException .. 206
5.4.8.3. Hangs and Transaction Timeouts ... 206

JBoss Admin Development Guide

iv

6. Messaging on JBoss .. 207
6.1. JMS Examples ... 207

6.1.1. A Point-To-Point Example ... 207
6.1.2. A Pub-Sub Example .. 209
6.1.3. A Pub-Sub With Durable Topic Example .. 214
6.1.4. A Point-To-Point With MDB Example ... 216

6.2. JBoss Messaging Overview .. 222
6.2.1. Invocation Layer ... 222

6.2.1.1. RMI IL (deprecated) ... 222
6.2.1.2. OIL IL (deprecated) .. 222
6.2.1.3. UIL IL (deprecated) .. 222
6.2.1.4. UIL2 IL ... 222
6.2.1.5. JVM IL .. 223
6.2.1.6. HTTP IL .. 223

6.2.2. Security Manager .. 223
6.2.3. Destination Manager .. 223
6.2.4. Message Cache .. 223
6.2.5. State Manager ... 223
6.2.6. Persistence Manager .. 223

6.2.6.1. File PM .. 224
6.2.6.2. Rolling Logged PM .. 224
6.2.6.3. JDBC2 PM ... 224

6.2.7. Destinations .. 224
6.2.7.1. Queues ... 224
6.2.7.2. Topics .. 224

6.3. JBoss Messaging Configuration and MBeans ... 224
6.3.1. org.jboss.mq.il.jvm.JVMServerILService .. 225
6.3.2. org.jboss.mq.il.rmi.RMIServerILService (deprecated) ... 226
6.3.3. org.jboss.mq.il.oil.OILServerILService (deprecated) ... 226
6.3.4. org.jboss.mq.il.uil.UILServerILService (deprecated) ... 227
6.3.5. org.jboss.mq.il.uil2.UILServerILService ... 228

6.3.5.1. Configuring ILs for SSL .. 229
6.3.5.2. JMS client properties for the UIL2 transport ... 229

6.3.6. org.jboss.mq.il.http.HTTPServerILService .. 230
6.3.7. org.jboss.mq.server.jmx.Invoker ... 231
6.3.8. org.jboss.mq.server.jmx.InterceptorLoader .. 231
6.3.9. org.jboss.mq.sm.file.DynamicStateManager .. 231
6.3.10. org.jboss.mq.security.SecurityManager ... 232
6.3.11. org.jboss.mq.server.jmx.DestinationManager .. 234
6.3.12. org.jboss.mq.server.MessageCache ... 235
6.3.13. org.jboss.mq.pm.file.CacheStore .. 236
6.3.14. org.jboss.mq.pm.file.PersistenceManager .. 236
6.3.15. org.jboss.mq.pm.rollinglogged.PersistenceManager ... 236
6.3.16. org.jboss.mq.pm.jdbc2.PersistenceManager ... 236
6.3.17. Destination MBeans ... 238

6.3.17.1. org.jboss.mq.server.jmx.Queue .. 238
6.3.17.2. org.jboss.mq.server.jmx.Topic ... 239

6.3.18. Administration Via JMX .. 241
6.3.18.1. Creating Queues At Runtime ... 241
6.3.18.2. Creating Topics At Runtime .. 241
6.3.18.3. Managing a JBossMQ User IDs at Runtime .. 241

6.4. Specifying the MDB JMS Provider ... 241

JBoss Admin Development Guide

v

6.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean .. 242
6.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean ... 244
6.4.3. Integrating non-JBoss JMS Providers .. 244

7. Connectors on JBoss ... 245
7.1. JCA Overview ... 245
7.2. An Overview of the JBossCX Architecture .. 247

7.2.1. BaseConnectionManager2 MBean .. 248
7.2.2. RARDeployment MBean ... 249
7.2.3. JBossManagedConnectionPool MBean ... 250
7.2.4. CachedConnectionManager MBean .. 251
7.2.5. A Sample Skeleton JCA Resource Adaptor ... 251

7.3. Configuring JCA Adaptors ... 257
7.3.1. Configuring JDBC DataSources ... 257
7.3.2. Configuring Generic JCA Adaptors .. 264
7.3.3. Sample Configurations ... 267

8. Security on JBoss .. 268
8.1. J2EE Declarative Security Overview ... 268

8.1.1. Security References ... 270
8.1.2. Security Identity .. 271
8.1.3. Security roles .. 272
8.1.4. EJB method permissions .. 273
8.1.5. Web Content Security Constraints .. 275
8.1.6. Enabling Declarative Security in JBoss ... 276

8.2. An Introduction to JAAS .. 276
8.2.1. What is JAAS? .. 276

8.2.1.1. The JAAS Core Classes .. 277
8.3. The JBoss Security Model .. 280

8.3.1. Enabling Declarative Security in JBoss Revisited .. 283
8.4. The JBoss Security Extension Architecture .. 286

8.4.1. How the JaasSecurityManager Uses JAAS .. 288
8.4.2. The JaasSecurityManagerService MBean .. 291
8.4.3. The JaasSecurityDomain MBean .. 293
8.4.4. An XML JAAS Login Configuration MBean .. 294
8.4.5. The JAAS Login Configuration Management MBean .. 296
8.4.6. Using and Writing JBossSX Login Modules .. 296

8.4.6.1. org.jboss.security.auth.spi.IdentityLoginModule ... 296
8.4.6.2. org.jboss.security.auth.spi.UsersRolesLoginModule 297
8.4.6.3. org.jboss.security.auth.spi.LdapLoginModule ... 299
8.4.6.4. org.jboss.security.auth.spi.DatabaseServerLoginModule 302
8.4.6.5. BaseCertLoginModule .. 304
8.4.6.6. org.jboss.security.auth.spi.ProxyLoginModule .. 306
8.4.6.7. org.jboss.security.auth.spi.RunAsLoginModule .. 307
8.4.6.8. org.jboss.security.ClientLoginModule .. 307

8.4.7. Writing Custom Login Modules ... 308
8.4.7.1. Support for the Subject Usage Pattern .. 309
8.4.7.2. A Custom LoginModule Example .. 312

8.4.8. The DynamicLoginConfig service .. 315
8.5. The Secure Remote Password (SRP) Protocol .. 316

8.5.1. Providing Password Information for SRP .. 319
8.5.2. Inside of the SRP algorithm ... 321

8.5.2.1. An SRP example .. 323
8.6. Running JBoss with a Java 2 security manager ... 325

JBoss Admin Development Guide

vi

8.7. Using SSL with JBoss using JSSE ... 328
8.8. Configuring JBoss for use Behind a Firewall .. 332
8.9. How to Secure the JBoss Server .. 333

8.9.1. The jmx-console.war ... 333
8.9.2. The web-console.war ... 334
8.9.3. The http-invoker.sar .. 334
8.9.4. The jmx-invoker-adaptor-server.sar .. 334

9. Integrating Servlet Containers .. 335
9.1. The AbstractWebContainer Class .. 335

9.1.1. The AbstractWebContainer Contract .. 337
9.1.2. Creating an AbstractWebContainer Subclass ... 341

9.1.2.1. Use the Thread Context Class Loader ... 341
9.1.2.2. Integrate Logging Using log4j ... 341
9.1.2.3. Delegate web container authentication and authorization to JBossSX 342

9.2. JBoss/Tomcat-5 bundle notes .. 343
9.2.1. The Tomcat server.xml file .. 343

9.2.1.1. Connector .. 344
9.2.1.2. Engine ... 346
9.2.1.3. Host ... 346
9.2.1.4. DefaultContext ... 346
9.2.1.5. Logger ... 347
9.2.1.6. Valve ... 347

9.2.2. Using SSL with the JBoss/Tomcat bundle ... 347
9.2.3. Setting up Virtual Hosts ... 350
9.2.4. Serving Static Content ... 351
9.2.5. Using Apache with the Tomcat ... 351
9.2.6. Using Clustering ... 352

10. MBean Services Miscellany ... 354
10.1. System Properties Management ... 354
10.2. Property Editor Management ... 355
10.3. Services Binding Management .. 355

10.3.1. Running Two JBoss Instances .. 357
10.4. Scheduling Tasks ... 361

10.4.1. org.jboss.varia.scheduler.Scheduler .. 361
10.5. The JBoss Logging Framework ... 364

10.5.1. org.jboss.logging.Log4jService .. 365
10.6. RMI Dynamic Class Loading .. 365

10.6.1. org.jboss.web.WebService ... 365
11. The CMP Engine .. 366

11.1. Getting Started ... 366
11.1.1. Example Code ... 366
11.1.2. Tests ... 368
11.1.3. Read-ahead ... 370

11.2. The jbosscmp-jdbc Structure ... 370
11.3. Entity Beans .. 372

11.3.1. Entity Mapping ... 374
11.4. CMP-Fields ... 376

11.4.1. CMP-Field Abstract Accessors ... 376
11.4.2. CMP-Field Declaration .. 377
11.4.3. CMP-Field Column Mapping ... 377
11.4.4. Read-only Fields ... 378
11.4.5. Auditing Entity Access .. 379

JBoss Admin Development Guide

vii

11.4.6. Dependent Value Classes (DVCs) ... 380
11.5. Container Managed Relationships ... 383

11.5.1. CMR-Field Abstract Accessors ... 384
11.5.2. Relationship Declaration .. 384
11.5.3. Relationship Mapping .. 385

11.5.3.1. Relationship Role Mapping ... 387
11.5.3.2. Foreign Key Mapping ... 389
11.5.3.3. Relation-table Mapping ... 389

11.6. Queries .. 391
11.6.1. Finder and ejbSelect Declaration .. 392
11.6.2. EJB-QL Declaration .. 392
11.6.3. Overriding the EJB-QL to SQL Mapping .. 393
11.6.4. JBossQL ... 394
11.6.5. DynamicQL .. 395
11.6.6. DeclaredSQL .. 396

11.6.6.1. Parameters .. 399
11.6.7. EJBQL 2.1 and SQL92 queries ... 400
11.6.8. BMP Custom Finders ... 400

11.7. Optimized Loading ... 401
11.7.1. Loading Scenario ... 401
11.7.2. Load Groups ... 403
11.7.3. Read-ahead ... 403

11.7.3.1. on-find ... 404
11.7.3.2. on-load ... 408
11.7.3.3. none ... 409

11.8. Loading Process ... 410
11.8.1. Commit Options .. 410
11.8.2. Eager-loading Process .. 410
11.8.3. Lazy loading Process ... 412

11.8.3.1. Relationships .. 412
11.8.4. Lazy loading result sets .. 415

11.9. Transactions ... 415
11.10. Optimistic Locking ... 417
11.11. Entity Commands and Primary Key Generation .. 421

11.11.1. Existing Entity Commands ... 422
11.12. Defaults ... 424

11.12.1. A sample jbosscmp-jdbc.xml defaults declaration .. 426
11.13. Datasource Customization ... 427

11.13.1. Function Mapping .. 430
11.13.2. Type Mapping ... 430
11.13.3. User Type Mappings .. 431

A. The JBoss Group and Our LGPL License .. 433
A.1. About The JBoss Group ... 433
A.2. The GNU Lesser General Public License (LGPL) .. 433

B. Book Example Installation .. 441

JBoss Admin Development Guide

viii

Forward
— Marc Fluery

If you are reading this foreword, first of all I want to thank you for buying our products. This is one of the ways
in which you can support the development effort and ensure that JBoss continues to thrive and deliver the most
technologically advanced web application server possible. The time this book was written corresponds to an in-
teresting point in the evolution of Open Source. There are many projects out there and once the initial excite-
ment has faded, the will to continue requires some professional dedication. JBoss seeks to define the forefront
of "Professional Open Source" through commercial activities that subsidize the development of the free core
product.

JBoss' modules are growing fast. The JMX base allows us to integrate all these disparate modules together us-
ing the MBeanServer of JMX as the basic abstraction for their life cycle and management. In this book, we
cover the configuration and administration of all our MBeans. We also provide a comprehensive snapshot of
the state of JBoss server modules, documented in a professional fashion by one of our very best developers.
From the basic architecture, to the advanced modules like JBossSX for security and our CMP engine, you will
find the information you need "to get the job done." In addition, we provide a wealth of information on all the
modules you will want to understand better and eventually master as you progress in your day-to-day usage of
JBoss.

JBoss has achieved a reputation for technical savvy and excellence. I would like this reputation to evolve a bit.
Don't get me wrong, I am extremely proud of the group of people gathered around JBoss for the past 3+ years,
but I want to make the circle bigger. I want to include all of you reading this book. Think of JBoss, not only as
a great application server, but also as a community that thrives by the addition of new minds. We are not simply
interested in gaining users; we are interested in giving you the tools and the knowledge necessary to master our
product to the point of becoming a contributor. Understanding JBoss' configuration and architecture is a neces-
sary step, not only for your day job using JBoss in development and production, but also an initiation into the
joy of technology, as experienced in Open Source.

We hope this book will fulfill its potential to bring as many of you as possible to a strong enough understanding
of the modules' functionality to dream up new tools and new functionalities, maybe even new modules. When
you reach that point, make sure to come online, where you will find a thriving community of committed profes-
sionals sharing a passion for good technology. At www.jboss.org [http://www.jboss.org], you can also find ad-
ditional information, forums, and the latest binaries.

Again thank you for buying our documentation. We hope to see you around. In the meantime, learn, get the job
done and, most of all, enjoy,

ix

http://www.jboss.org

About Open Source
The basic idea behind open source is very simple: When programmers can read, redistribute, and modify the
source code for a piece of software, the software evolves. People improve it, people adapt it, people fix bugs.
And this can happen at a speed that, if one is used to the slow pace of conventional software development,
seems astonishing.Open Source is an often-misunderstood term relating to free software. The Open Source Ini-
tiative (OSI) web site provides a number of resources that define the various aspects of Open Source including
an Open Source Definition at: http://www.opensource.org/docs/definition.html. The following quote from the
OSI home page summarizes the key aspects as they relate to JBoss nicely:

We in the open source community have learned that this rapid evolutionary process produces better soft-
ware than the traditional closed model, in which only a very few programmers can see the source and
everybody else must blindly use an opaque block of bits.

Open Source Initiative exists to make this case to the commercial world.

Open source software is an idea whose time has finally come. For twenty years it has been building mo-
mentum in the technical cultures that built the Internet and the World Wide Web. Now it's breaking out in-
to the commercial world, and that's changing all the rules. Are you ready?

—The Open Source Initiative

x

http://www.opensource.org/docs/definition.html

About JBoss
JBoss, Inc, headed by Marc Fleury, is composed of over 100 developers worldwide who are working to deliver
a full range of J2EE tools, making JBoss the premier Enterprise Java application server for the Java 2 Enter-
prise Edition platform.

JBoss is an Open Source, standards-compliant, J2EE application server implemented in 100% Pure Java. The
JBoss/Server and complement of products are delivered under a public license. With upwards of 100,000
downloads per month, JBoss is the most downloaded J2EE based server in the industry.

JBoss, one of the leading Java Open Source groups, integrates and develops these services for a full
J2EE-based implementation. JBoss provides JBossServer, the basic EJB container, and Java Management Ex-
tension (JMX) infrastructure. It also provides JBossMQ, for JMS messaging, JBossTX, for JTA transactions,
JBossCMP for CMP persistence, JBossSX for JAAS based security, and JBossCX for JCA connectivity. Sup-
port for web components, such as servlets and JSP pages, is provided by an abstract integration layer. Imple-
mentations of the integration service are provided for third party servlet engines like Tomcat and Jetty. JBoss
enables you to mix and match these components through JMX by replacing any component you want with a
JMX compliant implementation for the same APIs. JBoss doesn't even impose the JBoss components. Now that
is modularity.

1. JBoss: A Full J2EE Implementation with JMX

Our goal is to provide the full Open Source J2EE stack. We have met our goal, and the reason for our success
lies on JMX. JMX, or Java Management Extension, is the best weapon we have found for integration of soft-
ware. JMX provides a common spine that allows one to integrate modules, containers, and plug-ins. Figure 1 il-
lustrates how JMX is used a bus through which the components of the JBoss architecture interact.

Figure 1. The JBoss JMX integration bus and the standard JBossXX components

xi

2. What this Book Covers

The primary focus of this book is the presentation of the standard JBoss 3.2.x architecture components from
both the perspective of their configuration and architecture. As a user of a standard JBoss distribution you will
be given an understanding of how to configure the standard components. Note that this book is not an introduc-
tion to J2EE or how to use J2EE in applications. It focuses on the internal details of the JBoss server architec-
ture and how our implementation of a given J2EE container can be configured and extended.

As a JBoss developer, you will be given a good understanding of the architecture and integration of the stand-
ard components to enable you to extend or replace the standard components for your infrastructure needs. We
also show you how to obtain the JBoss source code, along with how to build and debug the JBoss server.

About JBoss

xii

1
Installing and Building the JBoss Server

JBoss, a free J2EE-based application server, is the most widely used Open Source application server on the
market. The highly flexible and easy-to-use server architecture has made JBoss the ideal choice for users just
starting out with J2EE, as well as senior architects looking for a customizable middleware platform. The server
binary and source code distributions are available from the SourceForge repository. (ht-
tp://sourceforge.net/projects/jboss). The ready availability of the source code allows you to debug the server,
learn its inner workings and create customized versions for your personal or business use.

This chapter is a step-by-step tutorial about how to install and configure JBoss 3.2. You will learn how to:

• Obtain updated binaries from the JBoss SourceForge project site
• Install the binary
• Test the installation

You will also learn about:

• The installation directory structure
• Key configuration files an administrator may want to use to customize the JBoss installation
• Obtaining the source code for the 3.2.x release from the SourceForge CVS repository
• Building the server distribution.

1.1. Getting the Binary Files

The most recent release of JBoss is available from the SourceForge JBoss project files page, ht-
tp://sourceforge.net/projects/jboss. You will also find previous releases as well as beta and release candidate
versions of upcoming releases.

1.1.1. Prerequisites

Before installing and running the server, check your system to make sure you have a working JDK 1.3+ install-
ation. The simplest way to do this is to execute the java -version command to ensure that the java executable
is in your path, and that you are using Version 1.3 or higher. For example, running this command with a 1.3.1
JDK would produce version number like the following.

[nr@toki tmp]$ java -version
java version "1.3.1"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1-root_1.3.1_031103-17:49)
Java HotSpot(TM) Client VM (build 1.3.1_03-76, mixed mode)

It does not matter where on your system you install JBoss. Note, however, that installing JBoss into a directory
that has a name containing spaces causes problems in some situations with Sun-based VMs. This is caused by
bugs with file URLs not correctly escaping the spaces in the resulting URL. There is no requirement for root
access to run JBoss on UNIX/Linux systems because none of the default ports are within the 0-1023 privileged
port range.

1

http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss

1.1.2. Installing the Binary Package

After you have the binary archive you want to install, use the JDK jar tool (or any other ZIP extraction tool) to
extract the jboss-3.2.6.zip archive contents into a location of your choice. The jboss-3.2.6.tgz archive is a
gzipped tar file that requires a gnutar compatible tar which can handle the long pathnames in the archive. The
default tar binaries on Solaris and OSX do not currently support the long pathnames. The extraction process
will create a jboss-3.2.6 directory. The following section explores the contents of this directory.

1.1.2.1. Directory Structure

As mentioned above, installing the JBoss distribution creates a jboss-3.2.6 directory which contains server
start scripts, JARs, server configuration sets and working directories. You do need to know your way around
the distribution layout to locate JARs for compilation, updating configurations, deploying your code, etc. Fig-
ure 1.1 illustrates the installation directory of the JBoss server.

Figure 1.1. The view of the JBoss server installation directory structure with the default server
configuration file set expanded and overridable locations identified

Throughout the book we will refer to the top-level jboss-3.2.6 directory as the JBOSS_DIST directory. In Fig-
ure 1.1, the default server configuration file set is shown expanded. It contains a number of subdirectories:
conf, data, deploy, lib, log and tmp. In a clean installation, only the conf, deploy and lib directories will ex-
ist. The purpose of each of these directories are discussed in Table 1.1. In this table, the ServerConfig Property
column refers to the org.jboss.system.server.ServerConfig interface constant and its corresponding system
property string. The ServerConfig constant names and corresponding system property name are displayed in
the blue text in Figure 1.1. The XXX_URL names correspond to locations that can be specified using a URL to ac-
cess remote locations, for example, HTTP URLs against a web server. You can use the properties listed in the
following table to override the layout of a JBoss distribution

Installing and Building the JBoss Server

2

Table 1.1. The JBoss directory structure

Directory Description ServerConfig Property

bin All the entry point JARs and start scripts included with
the JBoss distribution are located in the bin directory.

client JARs required for clients are located in the client dir-
ectory. A typical client requires the following:

• jbossall-client.jar

• concurrent.jar

• log4j.jar

• jaas.jar, jnet.jar (If not using JDK1.4+)
• jcert.jar, jsse.jar (for SSL if not using

JDK1.4+)

server The JBoss server configuration sets are located under
the server directory. The default server configuration
set is the server/default set. JBoss ships with
minimal, default and all configuration sets. The sub-
directories and key configuration files contained in the
default configuration set are discussed in more detail
in Section 1.1.3

SERVER_BASE_DIR =

"jboss.server.base.dir"

SERVER_BASE_URL =

"jboss.server.base.url"

lib The lib directory contains startup JARs used by JBoss.
Do not place your own libraries in this directory.

LIBRARY_URL =

"jboss.lib.url"

conf The conf directory contains the bootstrap descriptor,
jboss-service.xml by default, file for a given server
configuration. This defines the core services that are
fixed for the lifetime of the server.

SERVER_CONFIG_URL =

"jboss.server.config.url"

data The data directory is a location available for use by ser-
vices that want to store content in the file system.

SERVER_DATA_DIR =

"jboss.server.data.dir"

deploy The deploy directory is the default location the hot de-
ployment service looks to for dynamic deployment con-
tent. This may be overridden through the URLDeploy-

mentScanner URLs attribute.

lib The lib directory is the default location referred to the
by bootstrap descriptor. All JARs in this directory are
loaded into the shared classpath.

SERVER_LIBRARY_URL =

"jboss.server.lib.url"

log The log directory is the default directory into which the
bootstrap logging service places its logs. This may be
overridden through the conf/log4j.xml configuration
file.

none

tmp The tmp directory is the location to which deployments
are copied for local use.

SERVER_TEMP_DIR=

"jboss.server.temp.dir"

1.1.3. The Default Server Configuration File Set

Installing and Building the JBoss Server

3

The JBOSS_DIST/server directory contains one or more configuration file sets. The default JBoss configura-
tion file set is located in the JBOSS_DIST/server/default directory. JBoss allows you to add more than one
configuration set so a server can easily be run using alternate configurations. Creating a new configuration file
set typically starts with copying the default file set into a new directory name and then modifying the config-
uration files as desired. Figure 1.2 below shows the contents of the default configuration file set.

Figure 1.2. An expanded view of the default server configuration file set conf and deploy directories

conf/jboss-minimal.xml
This is a minimalist example of the jboss-service.xml configuration file. It is the jboss-service.xml

file used in the minimal configuration file set.

conf/jboss-service.xml
The jboss-service.xml defines the core services configurations. The complete DTD and syntax of this
file is described, along with the details on integrating custom services, in Section 2.4.2.

conf/jbossmq-state.xml
The jbossmq-state.xml is the JBossMQ configuration file that specifies the user to password mappings
file, and the user to durable subscription. The format of this file is described in
org.jboss.mq.sm.file.DynamicStateManager.

conf/jndi.properties
The jndi.properties file specifies the JNDI InitialContext properties that are used within the JBoss
server when an InitialContext is created using the no-arg constructor.

conf/log4j.xml

Installing and Building the JBoss Server

4

The file configures the Apache log4j framework category priorities and appenders used by the JBoss server
code. See the JBoss/Log4j book for details on configuring and using log4j with JBoss.

conf/login-config.xml
The login-config.xml file contains sample server side authentication configurations that are applicable
when using JAAS based security. See Chapter 8 for additional details on the JBoss security framework and
the format of this file.

conf/server.policy
The server.policy file is a place holder for Java2 security permissions. The default file simply grall per-
missions to all codebases.

conf/standardjaws.xml
The standardjaws.xml provides a default configuration file for the legacy EJB 1.1 JBossCMP engine. The
cmp layer was rewritten in JBoss 3.0 to support EJB 2.0 and is fully documented for the 3.2 version in the
chapter entitled The CMP Engine.

conf/standardjbosscmp-jdbc.xml
The standardjbosscmp-jdbc.xml provides a default configuration file for the JBoss 3.2 EJB 2.0
JBossCMP engine. See Chapter 11 for the details of this descriptor.

conf/standardjboss.xml
The standardjboss.xml file provides the default container configurations. Use of this file is covered in
Chapter 5

conf/xmdesc/ClientTransaction-mbean.xml, JNDIView-xmbean.xml, TransactionManagerService-xm-
bean.xml

The xmdesc directory contains XMBean descriptors for several services configured in the jboss-ser-

vice.xml file.

deploy/cache-invalidation-service.xml
The cache-invalidation-service.xml is a service that allows for custom invalidation of the EJB caches
via JMS notifications. It is disabled by default.

deploy/client-deployer-service.xml
The client-deployer-service.xml is a service that provides support for J2EE application clients. It man-
ages the java:comp/env enterprise naming context for client applications based on the application-cli-
ent.xml descriptor.

deploy/hsqldb-ds.xml
The hsqldb-ds.xml the Hypersonic 1.7.1 embedded database service configuration file. It sets up the em-
bedded database and related connection factories. The format of JCA datasource files is discussed in Sec-
tion 7.3.1.

deploy/http-invoker.sar
The http-invoker.sar contains the detached invoker that supports RMI/HTTP. It also setups bindings of
RMI/HTTP proxies for the JNDI naming service that allow the JBoss JNDI service to be accessed over ht-
tp. This will be discussed in Section 2.7.2.5

deploy/jboss-jca.sar
The jboss-jca.sar is the application server implementation of the 1.0 JCA specification. It provides the
connection management facilities for integrating resource adaptors into the JBoss server. The JCA layer is
discussed in Chapter 7.

deploy/jboss-local-jdbc.rar

Installing and Building the JBoss Server

5

The jboss-local-jdbc.rar is a JCA resource adaptor that implements the JCA ManagedConnectionFact-

ory interface for JDBC drivers that support the DataSource interface but not JCA.

deploy/jboss-xa.rar
The jboss-xa.rar is a JCA resource adaptor that implements the JCA ManagedConnectionFactory inter-
face for JDBC drivers that support the XADataSource interface, but do not provide JCA adaptor.

deploy/jbossweb-tomcat50.sar
The jbossweb-tomcat50.sar directory is an unpacked MBean service archive for the configuration of the
Tomcat 5 servlet engine. The SAR is unpacked rather than deployed as a JAR archive so that the tomcat
configuration files can be easily edited. This service is discussed in Chapter 9.

deploy/jms/jbossmq-destinations-service.xml
The jbossmq-destinations-service.xml file configures a number of JMS queues and topics used by the
JMS unit tests. Configuration of JMS destinations is discussed in Chapter 6.

deploy/jms/jbossmq-httpil.sar
The jbossmq-httpil.sar provides a JMS invocation layer that allows the use of JMS over http.

deploy/jms/jbossmq-service.xml
The jbossmq-service.xml file configures the core JBossMQ JMS service. These JMS services are dis-
cussed in Chapter 6.

deploy/jms/jms-ra.rar
The jms-ra.rar is a JCA resource adaptor that implements the JCA ManagedConnectionFactory interface
for JMS connection factories.

deploy/jms/jms-ds.xml
The jms-ds.xml file configures the JBossMQ JMS provider for use with the jms-ra.rar JCA resource ad-
aptor.

deploy/jms/jvm-il-service.xml
The jvm-il-service.xml configures the inter-vm JMS transport invocation layer. This transport layer is
described in org.jboss.mq.il.jvm.JVMServerILService.

deploy/jms/oil-service.xml
The oil-service.xml configures the JMS optimized invocation layer. This transport layer is described in
org.jboss.mq.il.oil.OILServerILService. (deprecated)

deploy/jms/oil2-service.xml
The oil2-service.xml configures the JMS version 2 optimized invocation layer. It is an experimental
work that should not be used and will be dropped in the future.

deploy/jms/rmi-il-service.xml
The rmi-il-service.xml configures the JMS RMI based invocation layer. This is a slow transport layer
that should not be used and will be dropped in the future.

deploy/jms/uil2-service.xml
The uil2-service.xml configures the JMS version 2 unified invocation layer. Its a custom socket based
transport that is the fastest and most reliable and should be used for inter-vm messaging. This transport lay-
er is described in org.jboss.mq.il.uil2.UILServerILService.

deploy/jmx-console.war
The jmx-console.war directory is an unpackaged web application archive that provides an HTML adaptor
for the JMX MBeanServer. The WAR is unpackaged rather than deployed as a jar archive so that the jmx-

Installing and Building the JBoss Server

6

console.war/WEB-INF/*.xml descriptors may be edited to configure role based security easily. The jmx-
console is discussed in Section 2.3.1

deploy/jmx-invoker-adaptor-server.sar
The jmx-invoker-adaptor-server.sar is an unpacked MBean service archive that exposes a subset of the
JMX MBeanServer interface methods as an RMI interface to enable remote access to the JMX core func-
tionality. This is similar to the legacy jmx-rmi-adaptor.sar, with the difference that the transport is
handled by the detached invoker architecture. This service is discussed in Section 2.3.4.

deploy/mail-service.xml
The mail-service.xml file is an MBean service descriptor that provides JavaMail sessions for use inside
of the JBoss server.

deploy/management/console-mgr.sar, web-console.war
The console-mgr.sar and web-console.war are an experimental web application/applet that provide a
richer view of the JMX server management data than the JMX console. At this time they are still under de-
velopment. You may view the console using the URL http://localhost:8080/web-console/.

deploy/monitoring-service.xml
The monitoring-service.xml file configures alert monitors like the console listener and email listener
used by JMX notifications.

deploy/properties-service.xml
The properties-service.xml file is an MBean service descriptor that allows for customization of the
JavaBeans PropertyEditors as well as the definition of system properties. This is discussed further in Sec-
tion 10.1.

deploy/scheduler-service.xml, schedule-manager-service.xml
The scheduler-service.xml, schedule-manager-service.xml files are MBean service descriptors that
provides a scheduling type of service. This is discussed further in Section 10.4.

deploy/sqlexception-service.xml
The sqlexception-service.xml file is an MBean service descriptor for handling vendor specific handling
of java.sql.SQLExceptions. Its usage is discussed in Section 11.11.

deploy/transaction-service.xml
The transaction-service.xml service descriptor sets up the JBoss JTA transaction manager related ser-
vices. This and related services are discussed in more detail in Chapter 4.

deploy/user-service.xml
The user-service.xml file is a template MBean service descriptor to which you may add your own cus-
tom MBean services. Its not necessary to use this file for this purpose however. Writing MBean services is
discussed in Section 2.4.3.

deploy/uuid-key-generator.sar
The uuid-key-generator.sar service provides a UUID based key generation facility.

1.2. Basic Installation Testing

Once you have installed the JBoss distribution, it is wise to perform a simple startup test to validate that there
are no major problems with your Java VM/operating system combination. To test your installation, move to the
JBOSS_DIST/bin directory and execute the run.bat or run.sh script as appropriate for your operating system.
Your output should be similar to that shown below and contain no error or exception messages:

Installing and Building the JBoss Server

7

[orb@toki bin]$ sh run.sh
===

JBoss Bootstrap Environment

JBOSS_HOME: /tmp/jboss-3.2.6

JAVA: /System/Library/Frameworks/JavaVM.framework/Home//bin/java

JAVA_OPTS: -Dprogram.name=run.sh

CLASSPATH: /tmp/jboss-3.2.6/bin/run.jar:/System/Library/Frameworks/JavaVM.framework/Home
//lib/tools.jar

===

11:41:32,879 INFO [Server] Starting JBoss (MX MicroKernel)...
11:41:32,898 INFO [Server] Release ID: JBoss [WonderLand] 3.2.6 (build: CVSTag=JBoss_3_2_
6 date=200410140106)
11:41:32,902 INFO [Server] Home Dir: /private/tmp/jboss-3.2.6
11:41:33,039 INFO [Server] Home URL: file:/private/tmp/jboss-3.2.6/
11:41:33,043 INFO [Server] Library URL: file:/private/tmp/jboss-3.2.6/lib/
11:41:33,140 INFO [Server] Patch URL: null
11:41:33,147 INFO [Server] Server Name: default
11:41:33,237 INFO [Server] Server Home Dir: /private/tmp/jboss-3.2.6/server/default
11:41:33,250 INFO [Server] Server Home URL: file:/private/tmp/jboss-3.2.6/server/default/

11:41:33,256 INFO [Server] Server Data Dir: /private/tmp/jboss-3.2.6/server/default/data
11:41:33,260 INFO [Server] Server Temp Dir: /private/tmp/jboss-3.2.6/server/default/tmp
11:41:33,266 INFO [Server] Server Config URL: file:/private/tmp/jboss-3.2.6/server/defaul
t/conf/
11:41:33,270 INFO [Server] Server Library URL: file:/private/tmp/jboss-3.2.6/server/defau
lt/lib/
11:41:33,276 INFO [Server] Root Deployment Filename: jboss-service.xml
11:41:33,342 INFO [Server] Starting General Purpose Architecture (GPA)...
11:41:35,176 INFO [ServerInfo] Java version: 1.4.2_05,Apple Computer, Inc.
11:41:35,180 INFO [ServerInfo] Java VM: Java HotSpot(TM) Client VM 1.4.2-38,"Apple Comput
er, Inc."
11:41:35,190 INFO [ServerInfo] OS-System: Mac OS X 10.3.5,ppc
11:41:37,259 INFO [Server] Core system initialized

If your output is similar to this (accounting for installation directory differences), you should now be ready to
use JBoss. To shutdown the server, simply issue a Ctrl-C sequence in the console in which JBoss was started.
Alternatively, you can use the shutdown.sh command:

[nr@toki bin]$./shutdown.sh
A JMX client to shutdown (exit or halt) a remote JBoss server.

usage: shutdown [options] <operation>

options:
-h, --help Show this help message
-D<name>[=<value>] Set a system property
-- Stop processing options
-s, --server=<url> Specify the JNDI URL of the remote server
-n, --serverName=<url> Specify the JMX name of the ServerImpl
-a, --adapter=<name> Specify JNDI name of the RMI adapter to use
-u, --user=<name> Specify the username for authentication[not implemented yet]
-p, --password=<name> Specify the password for authentication[not implemented yet]

operations:
-S, --shutdown Shutdown the server (default)
-e, --exit=<code> Force the VM to exit with a status code
-H, --halt=<code> Force the VM to halt with a status code

Using run.sh without any arguments starts the server using the default server configuration file set. To start
with an alternate configuration file set pass in the name of the directory under JBOSS_DIST/server you wish to

Installing and Building the JBoss Server

8

use as the value to the -c command line option. For example, to start with the minimal configuration file set
you would specify:

[nr@toki bin]$./run.sh -c minimal
...
22:26:49,566 INFO [Server] JBoss (MX MicroKernel) [3.2.6RC2 (build: CVSTag=Branch_3_2 dat
e=200409270100)] Started in 11s:744ms

To view all of the supported command line options for the JBoss server bootstrap class issue run -h command,
and the output will be:

usage: run.sh [options]

options:
-h, --help Show this help message
-V, --version Show version information
-- Stop processing options
-D<name>[=<value>] Set a system property
-p, --patchdir=<dir> Set the patch directory; Must be absolute
-n, --netboot=<url> Boot from net with the given url as base
-c, --configuration=<name> Set the server configuration name
-j, --jaxp=<type> Set the JAXP impl type (ie. crimson)
-L, --library=<filename> Add an extra library to the loaders classpath
-C, --classpath=<url> Add an extra url to the loaders classpath
-P, --properties=<url> Load system properties from the given url
-b, --host=<host or ip> Bind address for all JBoss services

1.3. Booting from a Network Server

One very useful command line option is the --netboot=url option which causes JBoss to startup using the giv-
en URL as the base URL from which all libraries and configurations are loaded. Specifying the netboot option
sets the ServerConfig.HOME_URL to the netboot option URL argument value. In the absence of any other over-
rides, all of the locations found in the standard JBOSS_DIST structure of will be resolved relative to the
HOME_URL value. This means that if you make a JBoss distribution available from a web server you can boot
JBoss using only the run scripts and run.jar file from the JBOSS_DIST/bin directory. Note that the web
server must support the PROPFIND WebDAV command. JBoss includes a simple servlet filter that provides a
minimal support for the PROPFIND command so that JBoss itself may be used as the netboot web server.

An example Ant build script that creates a custom netboot configuration fileset for booting the default configur-
ation is available in the book examples/src/main/org/jboss/chap1/build-netboot.xml file. To test the net-
boot feature, run the build-netboot.xml script specifying the location of the JBOSS_DIST you want to use as
the netboot webserver as shown here:

[nr@toki examples]$ ant -Djboss.dist=/tmp/jboss-3.2.6 -buildfile src/main/org/jboss/chap1/
build-netboot.xml
Buildfile: src/main/org/jboss/chap1/build-netboot.xml

netboot:
[mkdir] Created dir: /tmp/jboss-3.2.6/server/netboot
[copy] Copying 44 files to /tmp/jboss-3.2.6/server/netboot
[unzip] Expanding: /tmp/jboss-3.2.6/docs/examples/netboot/netboot.war into /tmp/jboss-

3.2.6/server/netboot/deploy/netboot.war
[copy] Copying 14 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war
[copy] Copying 211 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server

/default
[copy] Copied 1 empty directory to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war

/server/default
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/netboot/deploy/jbossweb-tomcat50.sar

/META-INF

zipdir:
[move] Moving 10 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

Installing and Building the JBoss Server

9

efault/deploy/http-invoker.sarx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/http-invoker.sar
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/http-invoker.sarx

zipdir:
[move] Moving 6 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/de

fault/deploy/jms/jbossmq-httpil.sarx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/jms/jbossmq-httpil.sar
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/jms/jbossmq-httpil.sarx

zipdir:
[move] Moving 35 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/jbossweb-tomcat50.sarx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/jbossweb-tomcat50.sar
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/jbossweb-tomcat50.sarx

zipdir:
[move] Moving 22 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/jmx-console.warx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/jmx-console.war
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/jmx-console.warx

zipdir:
[move] Moving 5 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/de

fault/deploy/management/console-mgr.sarx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/management/console-mgr.sar
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/management/console-mgr.sarx

zipdir:
[move] Moving 53 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/management/web-console.warx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/management/web-console.war
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/management/web-console.warx

zipdir:
[move] Moving 2 files to /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/de

fault/deploy/jmx-invoker-adaptor-server.sarx
[zip] Building zip: /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/defaul

t/deploy/jmx-invoker-adaptor-server.sar
[delete] Deleting directory /tmp/jboss-3.2.6/server/netboot/deploy/netboot.war/server/d

efault/deploy/jmx-invoker-adaptor-server.sarx

BUILD SUCCESSFUL

You then startup the netboot server by specifying the netboot configuration as follows:

[nr@toki bin]$./run.sh -c netboot
===

JBoss Bootstrap Environment

JBOSS_HOME: /tmp/jboss-3.2.6

JAVA: /System/Library/Frameworks/JavaVM.framework/Home//bin/java

JAVA_OPTS: -Dprogram.name=run.sh

CLASSPATH: /tmp/jboss-3.2.6/bin/run.jar:/System/Library/Frameworks/JavaVM.framework/Home

Installing and Building the JBoss Server

10

//lib/tools.jar

===

13:53:38,479 INFO [Server] Starting JBoss (MX MicroKernel)...
13:53:38,488 INFO [Server] Release ID: JBoss [WonderLand] 3.2.6RC2 (build: CVSTag=Branch_
3_2 date=200409270100)
13:53:38,503 INFO [Server] Home Dir: /private/tmp/jboss-3.2.6
13:53:38,552 INFO [Server] Home URL: file:/private/tmp/jboss-3.2.6/
13:53:38,555 INFO [Server] Library URL: file:/private/tmp/jboss-3.2.6/lib/
13:53:38,563 INFO [Server] Patch URL: null
13:53:38,568 INFO [Server] Server Name: netboot
13:53:38,598 INFO [Server] Server Home Dir: /private/tmp/jboss-3.2.6/server/netboot
13:53:38,644 INFO [Server] Server Home URL: file:/private/tmp/jboss-3.2.6/server/netboot/
13:53:38,648 INFO [Server] Server Data Dir: /private/tmp/jboss-3.2.6/server/netboot/data
13:53:38,653 INFO [Server] Server Temp Dir: /private/tmp/jboss-3.2.6/server/netboot/tmp
13:53:38,656 INFO [Server] Server Config URL: file:/private/tmp/jboss-3.2.6/server/netboo
t/conf/
13:53:38,660 INFO [Server] Server Library URL: file:/private/tmp/jboss-3.2.6/server/netbo
ot/lib/
13:53:38,663 INFO [Server] Root Deployment Filename: jboss-service.xml
13:53:38,679 INFO [Server] Starting General Purpose Architecture (GPA)...
13:53:40,057 INFO [ServerInfo] Java version: 1.4.2_05,Apple Computer, Inc.
13:53:40,060 INFO [ServerInfo] Java VM: Java HotSpot(TM) Client VM 1.4.2-38,"Apple Comput
er, Inc."
13:53:40,131 INFO [ServerInfo] OS-System: Mac OS X 10.3.5,ppc
13:53:41,883 INFO [Server] Core system initialized
13:53:45,468 INFO [Log4jService$URLWatchTimerTask] Configuring from URL: resource:log4j.x
ml
13:53:47,754 INFO [NamingService] Started jnpPort=1099, rmiPort=1098, backlog=50, bindAdd
ress=/192.168.168.110, Client SocketFactory=null, Server SocketFactory=org.jboss.net.socke
ts.DefaultSocketFactory@ad093076
13:53:53,702 INFO [Embedded] Catalina naming disabled
13:53:57,796 INFO [Http11Protocol] Initializing Coyote HTTP/1.1 on http-192.168.168.110-8
080
13:53:58,102 INFO [Catalina] Initialization processed in 3578 ms
13:53:58,108 INFO [StandardService] Starting service jboss.web
13:53:58,185 INFO [StandardEngine] Starting Servlet Engine: Apache Tomcat/5.0.28
13:53:58,360 INFO [StandardHost] XML validation disabled
13:53:58,575 INFO [Catalina] Server startup in 469 ms
13:53:59,277 INFO [TomcatDeployer] deploy, ctxPath=/, warUrl=file:/private/tmp/jboss-3.2.
6/server/netboot/deploy/jbossweb-tomcat50.sar/ROOT.war/
13:54:03,106 INFO [TomcatDeployer] deploy, ctxPath=/netboot, warUrl=file:/private/tmp/jbo
ss-3.2.6/server/netboot/deploy/netboot.war/
13:54:04,111 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-192.168.168.110-8080
13:54:04,797 INFO [ChannelSocket] JK2: ajp13 listening on /192.168.168.110:8009
13:54:04,883 INFO [JkMain] Jk running ID=0 time=1/303 config=null
13:54:04,898 INFO [Server] JBoss (MX MicroKernel) [3.2.6RC2 (build: CVSTag=Branch_3_2 dat
e=200409270100)] Started in 25s:64ms

You can now startup any other instance of JBoss using just the run script and run.jar from the
JBOSS_DIST/bin directory. For example:

[orb@rubik bin]$ sh run.sh --netboot=http://192.168.168.110:8080/netboot/
===

JBoss Bootstrap Environment

JBOSS_HOME: /tmp/jboss-3.2.6

JAVA: /System/Library/Frameworks/JavaVM.framework/Home//bin/java

JAVA_OPTS: -Dprogram.name=run.sh

CLASSPATH: /tmp/jboss-3.2.6/bin/run.jar:/System/Library/Frameworks/JavaVM.framework/Home
//lib/tools.jar

===

Installing and Building the JBoss Server

11

13:55:40,847 INFO [Server] Starting JBoss (MX MicroKernel)...
13:55:40,867 INFO [Server] Release ID: JBoss [WonderLand] 3.2.6RC2 (build: CVSTag=Branch_
3_2 date=200409270100)
13:55:40,874 INFO [Server] Home Dir: /private/tmp/jboss-3.2.6
13:55:40,877 INFO [Server] Home URL: http://192.168.168.110:8080/netboot/
13:55:40,880 INFO [Server] Library URL: http://192.168.168.110:8080/netboot/lib/
13:55:40,928 INFO [Server] Patch URL: null
13:55:40,931 INFO [Server] Server Name: default
13:55:40,934 INFO [Server] Server Home Dir: /private/tmp/jboss-3.2.6/server/default
13:55:40,940 INFO [Server] Server Home URL: http://192.168.168.110:8080/netboot/server/de
fault/
13:55:40,943 INFO [Server] Server Data Dir: /private/tmp/jboss-3.2.6/server/default/data
13:55:40,946 INFO [Server] Server Temp Dir: /private/tmp/jboss-3.2.6/server/default/tmp
13:55:40,950 INFO [Server] Server Config URL: http://192.168.168.110:8080/netboot/server/
default/conf/
13:55:40,954 INFO [Server] Server Library URL: http://192.168.168.110:8080/netboot/server
/default/lib/
13:55:40,957 INFO [Server] Root Deployment Filename: jboss-service.xml
13:55:41,014 INFO [Server] Starting General Purpose Architecture (GPA)...
...

The custom netboot configuration fileset consists simply of the files needed to run the bossweb-tomcat50.sar

web server and a netboot.war whose content is the JBOSS_DIST/lib and JBOSS_DIST/server/default files.

1.4. Building the Server from Source Code

Source code is available for every JBoss module, and you can build any version of JBoss from source by down-
loading the appropriate version of the code from SourceForge.

1.4.1. Accessing the JBoss CVS Repositories at SourceForge

The JBoss source is hosted at SourceForge, a great Open Source community service provided by VA Linux
Systems. With over 88,000 Open Source projects and nearly 950,000 registered users, SourceForge.net is the
largest Open Source hosting service available. Many of tche top Open Source projects have moved their devel-
opment to the sourcesorge.net site. The services offered by SourceForge include hosting of project CVS re-
positories and a web interface for project management that includes bug tracking, release management, mailing
lists and more. Best of all, these services are free to all Open Source developers. For additional details and to
browse the plethora of projects, see the SourceForge home page. (http://sourceforge.net/).

1.4.2. Understanding CVS

CVS (Concurrent Versions System) is an Open Source version control system that is used pervasively
throughout the Open Source community. CVS is a source control or revision control tool designed to keep track
of source changes made by groups of developers who are working on the same files. CVS enables developers to
stay in sync with each other as each individual chooses.

1.4.3. Anonymous CVS Access

The JBoss project's SourceForge CVS repository can be accessed through anonymous (pserver) CVS with the
following instruction set. The module you want to check out must be specified as the modulename. When
prompted for a password for anonymous, simply press the Enter key. The general syntax of the command line
version of CVS for anonymous access to the JBoss repositories is:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/jboss login
cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/jboss co modulename

Installing and Building the JBoss Server

12

http://sourceforge.net/

The first command logs into JBoss CVS repository as an anonymous user. This command only needs to be per-
formed once for each machine on which you use CVS because the login information will be saved in your
HOME/.cvspass file or equivalent for your system. The second command checks out a copy of the modulename

source code into the directory from which you run the cvs command. To avoid having to type the long cvs

command line each time, you can set up a CVSROOT environment variable with the value
:pserver:anonymous@cvs.jboss.sourceforge.net:/cvsroot/jboss and then use the following abbreviated
versions of the previous commands:

cvs login
cvs -z3 co modulename

The name of the JBoss module alias you use depends on the version of JBoss you want. For the 3.0 branch the
module name is jboss-3.0, for the 3.2 branch it is jboss-3.2, and in general, for branch x.y the module name
is jboss-x.y. To checkout the HEAD revision of jboss to obtain the latest code on the main branch you would
use jboss-head as the module name. Releases of JBoss are tagged with the pattern JBoss_X_Y_Z where X is the
major version, Y is the minor version and Z is the patch version. Release branches of JBoss are tagged with the
pattern Branch_X_Y. Some checkout examples are:

cvs co -r Branch_3_0 jboss-3.0 # Checkout the current 3.0 branch code
cvs co -r JBoss_3_0_6 jboss-3.0 # Checkout the 3.0.6 release version code
cvs co -r Branch_3_2 jboss-3.2 # Checkout the current 3.2 branch code
cvs co -r JBoss_3_2_6 jboss-3.2 # Checkout the 3.2.6 release version code
cvs co jboss-head # Checkout the curent HEAD branch code

1.4.4. Obtaining a CVS Client

The command line version of the CVS program is freely available for nearly every platform, and is included by
default on most Linux and UNIX distributions. A good port of CVS as well as numerous other UNIX programs
for Win32 platforms is available from Cygwin at http://sources.redhat.com/cygwin/. The syntax of the com-
mand line version of CVS will be examined because this is common across all platforms.

For complete documentation on CVS, check out the CVS home page at http://www.cvshome.org/.

1.4.5. Building the JBoss 3.2.6 Distribution Using the Source Code

Every JBoss release includes a source archive that contains everything needed to build the release and is avail-
able from the files section of the JBoss project site here: http://sourceforge.net/projects/jboss/. The source dir-
ectory structure matches that of the CVS source tree described below so once you have the source distribution
you can build the release by following the instructions given in the next section, beginning with the instructions
after the step to obtain the jboss-3.2 source tree.

1.4.6. Building the JBoss 3.2.6 Distribution Using the CVS Source Code

This section will guide you through the task of building a JBoss distribution from the CVS source code. To
start, create a directory into which you want to download the CVS source tree, and move into the newly created
directory. This directory is referred to as the CVS_WD directory for CVS working directory. The example build in
this book will check out code into a /tmp/3.2.6 directory on a Linux system. Next, obtain the 3.2.6 version of
the source code as shown here1:

[nr@toki tmp]$ mkdir 3.2.6
[nr@toki tmp]$ cd 3.2.6
[nrrrr@toki 3.2.6]$ export CVSROOT=:pserver:anonymous@cvs.sourceforge.net:/cvsroot/jboss

Installing and Building the JBoss Server

13

http://sources.redhat.com/cygwin/
http://www.cvshome.org/
http://sourceforge.net/projects/jboss/

1There was a change in the module aliases used to obtain the complete JBoss source tree just prior to the 3.0.4 release. Now, instead of us-
ing jboss-all as the module alias for every branch, a branch specific module alias is defined. For the 3.0 branch this is jboss-3.0, for the
3.2 branch it is jboss-3.2, etc. To checkout the HEAD revision of jboss to obtain the latest code on the main branch you would use jboss-

head as the module alias.

[nr@toki 3.2.6]$ cvs co -r JBoss_3_2_6 jboss-3.2
cvs server: Updating tools
U tools/.classpath
U tools/.donotremove
U tools/.project
cvs server: Updating tools/apache
...

The resulting jboss-3.2 directory structure contains all of the CVS modules required to build the server. To
perform the build, cd to the jboss-all/build directory and execute the build.sh or build.bat file as ap-
propriate for you OS. You will need to set the JAVA_HOME environment variable to the location of the JDK you
wish to use for compilation.

[nr@toki 3.2.6]$ cd jboss-3.2/build/
[nr@toki build]$ export JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Home/
[nr@toki build]$ PATH=$JAVA_HOME/bin:$PATH
[nr@toki build]$./build.sh
Searching for build.xml ...
Buildfile: /tmp/3.2.6/jboss-3.2/build/build.xml

...

BUILD SUCCESSFUL
Total time: 2 minutes 41 seconds

Note that if you see an "Failed to launch JJTree" error do not have the JAVA_HOME/bin directory in your PATH
required for the JavaCC JJTree Ant task.

The build process is driven by an Ant based configuration. The main Ant build script is the build.xml file loc-
ated in the jboss-3.2/build directory. This script uses a number of custom Ant tasks masked as buildmagic
constructs. The purpose of the main build.xml file is to compile the various module directories under jboss-
3.2 and then to integrate their output to produce the binary release. The binary release structure is found under
the jboss-3.2/build/output directory. The example above used the build.sh script to kickoff the build pro-
cess. This is just a wrapper the launches the ant binary included in the distribution. You can simply use ant if
you have your environment setup to run Ant from the command line.

1.4.7. An Overview of the JBoss CVS Source Tree

The top-level directory structure under the jboss-3.2 source tree is illustrated in Figure 1.3, the CVS source tree
top-level directories. Table 1.2 gives the primary purpose of each of the top-level directories.

Table 1.2. Descriptions of the top-level directories of the JBoss CVS source tree.

Directory Description

blocks Not used

build The main build directory from which the release builds are initiated

cache The JBoss TreeCache module

cluster The clustering support services source module.

common A source module of common utility type code used by many of the other source mod-

Installing and Building the JBoss Server

14

Directory Description

ules.

compatible A backward compatibility module currently under development

connector The JCA support and application server integration source module.

console Admin apps for viewing the JMX MBeans

hibernate The hibernate deployer service.

iiop The RMI/IIOP transport service source module.

j2ee The core J2EE interfaces and classes.

jaxrpc The J2EE web services module.

jboss.net A web services support source module that provides support for using SOAP to invoke
operations on EJBs and MBeans.

jmx The JBoss JMX implementation source module.

management The JBoss JSR-77 source module.

messaging The JBoss JMS implementation source module.

naming The JBoss JNDI implementation source module.

security The JBoss standard J2EE declarative security implementation based on JAAS.

server The EJB 2.0 container implementation related source.

system The JMX micro kernel based bootstrap services and standard deployment services
source module.

testsuite The JUnit unit test source module.

thirdparty A module containing the third-party binary jars used by the JBoss modules.

tomcat The Tomcat-5.0.x embedded service source module

tools The jars used by the JBoss build process.

transaction The JTA transaction manager

varia Various utility services that have not or will not been integrated into one of the higher-
level modules.

1.4.8. Using the JBossTest unit testsuite

More advanced testing of the JBoss installation and builds can be done using the JBoss testsuite. The JBossTest
suite is a collection of client oriented unit tests of the JBoss server application. It is an Ant based package that
uses the JUnit (http://www.junit.org) unit test framework. The JBossTest suite is used as a QA benchmark by
the development team to help test new functionality and prevent introduction of bugs. It is run on a nightly
basis and the results are posted to the development mailing list for all to see.

The unit tests are run using Ant and the source for the tests are contained in the jboss-3.2/testsuite direct-
ory of the source tree. The structure of the testsuite CVS module is illustrated in Figure 1.3.

Installing and Building the JBoss Server

15

http://www.junit.org

Figure 1.3. The testsuite CVS module directory structure

The two main source branches are src/main and src/resources. The src/main tree contains the Java source
code for the unit tests. The src/resources tree contains resource files like deployment descriptors, JAR mani-
fest, web content, etc. The root package of every unit test is org.jboss.test. The typical structure below each
specific unit test subpackage (for example, security) consists of a test package that contains the unit test
classes. The test subpackage is a required naming convention as this is the only directory searched for unit
tests by the Ant build scripts. If the tests involves EJBs then the convention is to include an interfaces and
ejb subpackage for these components. The unit tests themselves need to follow a naming convention for the
class file. The unit test class must be named XXXUnitTest.java, where XXX is either the class being tested or the
name of the functionality being tested.

To run the unit tests use the build scripts located in the testsuite directory. The key targets in the build.xml

file include:

• tests: this target builds and runs all unit tests and generates HTML and text reports of the tests into the
testsuite/output/reports/html and testsuite/output/reports/text directories respectively.

• tests-standard-unit: builds all unit tests and runs a subset of the key unit tests. This is useful for quick
check of the server to test for gross problems.

• test: this target allows one to run all tests within a particular package. To run this target you need to specify
a test property that specifies a package name using -Dtest=package command line. The package value is
the name of the package below org.jboss.test you want to run unit tests for. So, for example, to run all
unit tests in the org.jboss.test.naming package, you would use: build.sh-Dtest=naming test

• one-test: this target allows you to run a single unit test. To run this target you need to specify a test property
that specifies the classname of the unit test using -Dtest=classname on the command line. So, for example,
to run the org.jboss.test.naming.test.ENCUnitTestCase, you would use: build.sh -

Dtest=org.jboss.test.naming.test.ENCUnitTestCase one-test

• tests-report: this target generates html and text reports of the tests into the testsuite/out-

put/reports/html and testsuite/output/reports/text directories respectively using the current JUnit
XML results in the testsuite/output/reports directory. This is useful for generating the nice html re-
ports when you have run a subset of the tests by hand and want to generate a summary.

Installing and Building the JBoss Server

16

On completion of a test the testsuite/output/reports directory will contain one or more XML files that rep-
resent the individual JUnit test runs. The tests-report target collates these into an HTML report located in the
html subdirectory along with a text report located in the text subdirectory. Figure 1.4 shows an example of the
HTML report for a run of the test suite against the JBoss 3.2.6 release.

You can find the results of the testsuite in the JBoss distribution in under the JBOSS_DIST/docs/tests direct-
ory.

Figure 1.4. An example testsuite run report status HTML view as generated by the testsuite

Note that many tests require a running JBoss instance to deploy to. The build script does not start the JBoss in-
stance. You will need to manually start the JBoss server in the all configuration before running the tests.

Installing and Building the JBoss Server

17

2
The JBoss JMX Microkernel

Modularly developed from the ground up, the JBoss server and container are completely implemented using
component-based plug-ins. The modularization effort is supported by the use of JMX, the Java Management
Extension API. Using JMX, industry-standard interfaces help manage both JBoss/Server components and the
applications deployed on it. Ease of use is still the number one priority, and the JBoss Server version 3.x archi-
tecture sets a new standard for modular, plug-in design as well as ease of server and application management.

This high degree of modularity benefits the application developer in several ways. The already tight code can
be further trimmed down to support applications that must have a small footprint. For example, if EJB passiva-
tion is unnecessary in your application, simply take the feature out of the server. If you later decide to deploy
the same application under an Application Service Provider (ASP) model, simply enable the server's passiva-
tion feature for that web-based deployment. Another example is the freedom you have to drop your favorite ob-
ject to relational database (O-R) mapping tool, such as TOPLink, directly into the container.

This chapter will introduce you to JMX and its role as the JBoss server component bus. You will also be intro-
duced to the JBoss MBean service notion that adds life cycle operations to the basic JMX management com-
ponent.

2.1. JMX

The success of the full Open Source J2EE stack lies with the use of JMX (Java Management Extension). JMX
is the best tool for integration of software. It provides a common spine that allows the user to integrate mod-
ules, containers, and plug-ins. Figure 2.1 shows the role of JMX as an integration spine or bus into which com-
ponents plug. Components are declared as MBean services that are then loaded into JBoss. The components
may subsequently be administered using JMX.

18

Figure 2.1. The JBoss JMX integration bus and the standard JBoss components

2.1.1. An Introduction to JMX

Before looking at how JBoss uses JMX as its component bus, it would help to get a basic overview what JMX
is by touching on some of its key aspects.

JMX components are defined by the Java Management Extensions Instrumentation and Agent Specification,
v1.0, which is available from the JSR003 Web page at http://jcp.org/aboutJava/communityprocess/final/jsr003/.
The material in this JMX overview section is derived from the JMX instrumentation specification, with a focus
on the aspects most used by JBoss. A more comprehensive discussion of JMX and its application can be found
in JMX: Managing J2EE with Java Management Extensions written by Juha Lindfors (Sams, 0672322889,
2002).

JMX is about providing a standard for managing and monitoring all varieties of software and hardware com-
ponents from Java. Further, JMX aims to provide integration with the large number of existing management
standards. Figure 2.2 shows examples of components found in a JMX environment, and illustrates the relation-
ship between them as well as how they relate to the three levels of the JMX model. The three levels are:

• Instrumentation, which are the resources to manage

• Agents, which are the controllers of the instrumentation level objects

• Distributed services, the mechanism by which administration applications interact with agents and their
managed objects

The JBoss JMX Microkernel

19

http://jcp.org/aboutJava/communityprocess/final/jsr003/

Figure 2.2. The Relationship between the components of the JMX architecture

2.1.1.1. Instrumentation Level

The instrumentation level defines the requirements for implementing JMX manageable resources. A JMX man-
ageable resource can be virtually anything, including applications, service components, devices, and so on. The
manageable resource exposes a Java object or wrapper that describes its manageable features, which makes the
resource instrumented so that it can be managed by JMX-compliant applications.

The user provides the instrumentation of a given resource using one or more managed beans, or MBeans. There
are four varieties of MBean implementations: standard, dynamic, model, and open. The differences between the
various MBean types is discussed in Managed Beans or MBeans.

The instrumentation level also specifies a notification mechanism. The purpose of the notification mechanism
is to allow MBeans to communicate changes with their environment. This is similar to the JavaBean property
change notification mechanism, and can be used for attribute change notifications, state change notifications,
and so on.

2.1.1.2. Agent Level

The agent level defines the requirements for implementing agents. Agents are responsible for controlling and
exposing the managed resources that are registered with the agent. By default, management agents are located
on the same hosts as their resources. This collocation is not a requirement.

The agent requirements make use of the instrumentation level to define a standard MBeanServer management
agent, supporting services, and a communications connector. JBoss provides both an html adaptor as well as an

The JBoss JMX Microkernel

20

RMI adaptor.

The JMX agent can be located in the hardware that hosts the JMX manageable resources when a Java Virtual
Machine (JVM) is available. This is how the JBoss server uses the MBeanServer. A JMX agent does not need
to know which resources it will serve. JMX manageable resources may use any JMX agent that offers the ser-
vices it requires.

Managers interact with an agent's MBeans through a protocol adaptor or connector, as described in the Sec-
tion 2.1.1.3 in the next section. The agent does not need to know anything about the connectors or management
applications that interact with the agent and its MBeans.

2.1.1.3. Distributed Services Level

The JMX specification notes that a complete definition of the distributed services level is beyond the scope of
the initial version of the JMX specification. This was indicated by the component boxes with the horizontal
lines in Figure 2.2. The general purpose of this level is to define the interfaces required for implementing JMX
management applications or managers. The following points highlight the intended functionality of the distrib-
uted services level as discussed in the current JMX specification.

• Provide an interface for management applications to interact transparently with an agent and its JMX man-
ageable resources through a connector

• Exposes a management view of a JMX agent and its MBeans by mapping their semantic meaning into the
constructs of a data-rich protocol (for example HTML or SNMP)

• Distributes management information from high-level management platforms to numerous JMX agents

• Consolidates management information coming from numerous JMX agents into logical views that are rel-
evant to the end user's business operations

• Provides security

It is intended that the distributed services level components will allow for cooperative management of networks
of agents and their resources. These components can be expanded to provide a complete management applica-
tion.

2.1.1.4. JMX Component Overview

This section offers an overview of the instrumentation and agent level components. The instrumentation level
components include the following:

• MBeans (standard, dynamic, open, and model MBeans)

• Notification model elements

• MBean metadata classes

The agent level components include:

• MBean server

• Agent services

The JBoss JMX Microkernel

21

2.1.1.4.1. Managed Beans or MBeans

An MBean is a Java object that implements one of the standard MBean interfaces and follows the associated
design patterns. The MBean for a resource exposes all necessary information and operations that a management
application needs to control the resource.

The scope of the management interface of an MBean includes the following:

• Attribute values that may be accessed by name

• Operations or functions that may be invoked

• Notifications or events that may be emitted

• The constructors for the MBean's Java class

JMX defines four types of MBeans to support different instrumentation needs:

• Standard MBeans: These use a simple JavaBean style naming convention and a statically defined manage-
ment interface. This is the most common type of MBean used by JBoss.

• Dynamic MBeans: These must implement the javax.management.DynamicMBean interface, and they ex-
pose their management interface at runtime when the component is instantiated for the greatest flexibility.
JBoss makes use of Dynamic MBeans in circumstances where the components to be managed are not
known until runtime.

• Open MBeans: These are an extension of dynamic MBeans. Open MBeans rely on basic, self-describing,
user-friendly data types for universal manageability.

• Model MBeans: These are also an extension of dynamic MBeans. Model MBeans must implement the
javax.management.modelmbean.ModelMBean interface. Model MBeans simplify the instrumentation of re-
sources by providing default behavior. Although JBoss does not use any Model MBeans for its core ser-
vices as of the 3.2.0 release, there is a Model MBean implementation known as an XMBean.

We will present an example of a Standard and a Model MBean in the section that discusses extending JBoss
with your own custom services.

2.1.1.4.2. Notification Model

JMX Notifications are an extension of the Java event model. Both the MBean server and MBeans can send no-
tifications to provide information. The JMX specification defines the javax.management package Notifica-

tion event object, NotificationBroadcaster event sender, and NotificationListener event receiver inter-
faces. The specification also defines the operations on the MBean server that allow for the registration of noti-
fication listeners.

2.1.1.4.3. MBean Metadata Classes

There is a collection of metadata classes that describe the management interface of an MBean. Users can obtain
a common metadata view of any of the four MBean types by querying the MBean server with which the
MBeans are registered. The metadata classes cover an MBean's attributes, operations, notifications, and con-
structors. For each of these, the metadata includes a name, a description, and its particular characteristics. For
example, one characteristic of an attribute is whether it is readable, writable, or both. The metadata for an oper-
ation contains the signature of its parameter and return types.

The JBoss JMX Microkernel

22

The different types of MBeans extend the metadata classes to be able to provide additional information as re-
quired. This common inheritance makes the standard information available regardless of the type of MBean. A
management application that knows how to access the extended information of a particular type of MBean is
able to do so.

2.1.1.4.4. MBean Server

A key component of the agent level is the managed bean server. Its functionality is exposed through an instance
of the javax.management.MBeanServer. An MBean server is a registry for MBeans that makes the MBean
management interface available for use by management applications. The MBean never directly exposes the
MBean object itself; rather, its management interface is exposed through metadata and operations available in
the MBean server interface. This provides a loose coupling between management applications and the MBeans
they manage.

MBeans can be instantiated and registered with the MBeanServer by the following:

• Another MBean

• The agent itself

• A remote management application (through the distributed services)

When you register an MBean, you must assign it a unique object name. The object name then becomes the
unique handle by which management applications identify the object on which to perform management opera-
tions. The operations available on MBeans through the MBean server include the following:

• Discovering the management interface of MBeans

• Reading and writing attribute values

• Invoking operations defined by MBeans

• Registering for notifications events

• Querying MBeans based on their object name or their attribute values

Protocol adaptors and connectors are required to access the MBeanServer from outside the agent's JVM. Each
adaptor provides a view via its protocol of all MBeans registered in the MBean server the adaptor connects to.
An example adaptor is an HTML adaptor that allows for the inspection and editing of MBeans using a Web
browser. As was indicated in Figure 2.2, there are no protocol adaptors defined by the current JMX specifica-
tion. Later versions of the specification will address the need for remote access protocols in standard ways.

A connector is an interface used by management applications to provide a common API for accessing the
MBean server in a manner that is independent of the underlying communication protocol. Each connector type
provides the same remote interface over a different protocol. This allows a remote management application to
connect to an agent transparently through the network, regardless of the protocol. The specification of the re-
mote management interface will be addressed in a future version of the JMX specification.

Adaptors and connectors make all MBean server operations available to a remote management application. For
an agent to be manageable from outside of its JVM, it must include at least one protocol adaptor or connector.
JBoss currently includes a custom HTML adaptor implementation and a custom JBoss RMI adaptor.

2.1.1.4.5. Agent Services

The JBoss JMX Microkernel

23

The JMX agent services are objects that support standard operations on the MBeans registered in the MBean
server. The inclusion of supporting management services helps you build more powerful management solu-
tions. Agent services are often themselves MBeans, which allow the agent and their functionality to be con-
trolled through the MBean server. The JMX specification defines the following agent services:

• A dynamic class loading MLet (management applet) service: This allows for the retrieval and instanti-
ation of new classes and native libraries from an arbitrary network location.

• Monitor services: These observe an MBean attribute's numerical or string value, and can notify other ob-
jects of several types of changes in the target.

• Timer services: These provide a scheduling mechanism based on a one-time alarm-clock notification or on
a repeated, periodic notification.

• The relation service: This service defines associations between MBeans and enforces consistency on the
relationships.

Any JMX-compliant implementation will provide all of these agent services. However, JBoss does not rely on
any of these standard agent services.

2.2. JBoss JMX Implementation Architecture

2.2.1. The JBoss ClassLoader Architecture

JBoss 3.x employs a class loading architecture that facilitates sharing of classes across deployment units and
hot deployment of services and applications. Before discussing the JBoss specific class loading model, we need
to understand the nature of Java's type system and how class loaders fit in.

2.2.2. Class Loading and Types in Java

Class loading is a fundamental part of all server architectures. Arbitrary services and their supporting classes
must be loaded into the server framework. This can be problematic due to the strongly typed nature of Java.
Most developers know that the type of a class in Java is a function of the fully qualified name of the class. As
of Java 1.2, the type is also a function of the java.lang.ClassLoader that is used to define that class. This ad-
ditional qualification of type was added to ensure that environments in which classes may be loaded from arbit-
rary locations would be type-safe. A paper entitled Java is not type-safe by Vijay Saraswat in 1997 demon-
strated that Java was not type-safe as intended. This could allow one to gain access to method and members of
a class to which they should not have had access by fooling the Java VM into using an alternate implementation
of a previously loaded class. Such circumvention of the type system was based on introducing class loaders that
by-pass the normal delegation model. A class loader uses a delegation model to search for classes and re-
sources. Each instance of ClassLoader has an associated parent class loader that is either explicitly set when it
is created, or assigned by the VM if no parent was specified. When called upon to find a class, a class loader
will typically delegate the search for the class to its parent class loader before attempting to find the class or re-
source itself. The VM has a root class loader, called the bootstrap class loader, does not have a parent but may
serve as the parent of a ClassLoader instance.

To address the type-safety issue, the type system was strengthened to include a class's defining ClassLoader in
addition to the name of the class to fully define the type. The original paper in which the solution was described
is Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang and Gilad Bracha, and can be obtained
from http://java.sun.com/people/sl/papers/oopsla98.ps.gz. The ramifications of this change in a dynamic envir-

The JBoss JMX Microkernel

24

http://java.sun.com/people/sl/papers/oopsla98.ps.gz

onment like an application server, and especially JBoss with its support for hot deployment are that class cast
exectiontions, linkage errors and illegal access errors can show up in ways not seen in more static class loading
contexts. Let's take a look at the meaning of each of these exceptions and how they can happen.

2.2.2.1. ClassCastExceptions - I'm Not Your Type

A java.lang.ClassCastException results whenever an attempt is made to cast an instance to an incompatible
type. A simple example is trying to obtain a String from a List into which a URL was placed:

ArrayList array = new ArrayList();
array.add(new URL("file:/tmp"));
String url = (String) array.get(0);

java.lang.ClassCastException: java.net.URL
at org.jboss.chap2.ex0.ExCCEa.main(Ex1CCE.java:16)

The ClassCastException tells you that the attempt to cast the array element to a String failed because the ac-
tual type was URL. This trivial case is not what we are interested in however. Consider the case of a JAR being
loaded by differendt class loaders. Although the classes loaded through each class loader are identical in terms
of the bytecode, they are completely different types as viewed by the Java type system. An example of this is il-
lustrated by the code shown in Example 2.1.

Example 2.1. The ExCCEc class used to demonstrate ClassCastException due to duplicate class loaders

package org.jboss.chap2.ex0;

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of a ClassCastException that
* results from classes loaded through
* different class loaders.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class ExCCEc
{

public static void main(String[] args) throws Exception
{

ChapterExRepository.init(ExCCEc.class);

String chapDir = System.getProperty("chapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
URLClassLoader ucl0 = new URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);
Class objClass = ucl0.loadClass("org.jboss.chap2.ex0.ExObj");
StringBuffer buffer = new

StringBuffer("ExObj Info");
Debug.displayClassInfo(objClass, buffer, false);
ucl0Log.info(buffer.toString());
Object value = objClass.newInstance();

File jar1 = new File(chapDir+"/j0.jar");

The JBoss JMX Microkernel

25

Logger ucl1Log = Logger.getLogger("UCL1");
ucl1Log.info("jar1 path: "+jar1.toString());
URL[] cp1 = {jar1.toURL()};
URLClassLoader ucl1 = new URLClassLoader(cp1);
Thread.currentThread().setContextClassLoader(ucl1);
Class ctxClass2 = ucl1.loadClass("org.jboss.chap2.ex0.ExCtx");
buffer.setLength(0);
buffer.append("ExCtx Info");
Debug.displayClassInfo(ctxClass2, buffer, false);
ucl1Log.info(buffer.toString());
Object ctx2 = ctxClass2.newInstance();

try {
Class[] types = {Object.class};
Method useValue =

ctxClass2.getMethod("useValue", types);
Object[] margs = {value};
useValue.invoke(ctx2, margs);

} catch(Exception e) {
ucl1Log.error("Failed to invoke ExCtx.useValue", e);
throw e;

}
}

}

Example 2.2. The ExCtx, ExObj, and ExObj2 classes used by the examples

package org.jboss.chap2.ex0;

import java.io.IOException;
import org.apache.log4j.Logger;
import org.jboss.util.Debug;

/**
* A classes used to demonstrate various class
* loading issues
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class ExCtx
{

ExObj value;

public ExCtx()
throws IOException

{
value = new ExObj();
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new StringBuffer("ctor.ExObj");
Debug.displayClassInfo(value.getClass(), buffer, false);
log.info(buffer.toString());
ExObj2 obj2 = value.ivar;
buffer.setLength(0);
buffer = new StringBuffer("ctor.ExObj.ivar");
Debug.displayClassInfo(obj2.getClass(), buffer, false);
log.info(buffer.toString());

}

public Object getValue()
{

return value;
}

public void useValue(Object obj)
throws Exception

{
Logger log = Logger.getLogger(ExCtx.class);

The JBoss JMX Microkernel

26

StringBuffer buffer = new
StringBuffer("useValue2.arg class");

Debug.displayClassInfo(obj.getClass(), buffer, false);
log.info(buffer.toString());
buffer.setLength(0);
buffer.append("useValue2.ExObj class");
Debug.displayClassInfo(ExObj.class, buffer, false);
log.info(buffer.toString());
ExObj ex = (ExObj) obj;

}

void pkgUseValue(Object obj)
throws Exception

{
Logger log = Logger.getLogger(ExCtx.class);
log.info("In pkgUseValue");

}
}

Example 2.3. The ExObj and ExObj2 classes used in the examples

package org.jboss.chap2.ex0;

import java.io.Serializable;

/**
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class ExObj
implements Serializable

{
public ExObj2 ivar = new ExObj2();

}

--
package org.jboss.chap2.ex0;

import java.io.Serializable;

/**
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class ExObj2
implements Serializable

{
}

The ExCCEc.main method uses reflection to isolate the classes that are being loaded by the class loaders ucl0

and ucl1 from the application class loader. Both are setup to load classes from the output/chap2/j0.jar, the
contents of which are:

[nr@toki examples]$ jar -tf output/chap2/j0.jar

org/jboss/chap2/ex0/ExCtx.class
org/jboss/chap2/ex0/ExObj.class
org/jboss/chap2/ex0/ExObj2.class

We will run an example that demonstrates how a class cast exection can occur and then look at the specific is-

The JBoss JMX Microkernel

27

sue with the example. See Appendix B for instructions on installing the examples accompanying the book, and
then run the example from within the examples directory using the following command:

[nr@toki examples]$ ant -Dchap=chap2 -Dex=0c run-example
...

[java] [ERROR,UCL1] Failed to invoke ExCtx.useValue
[java] java.lang.reflect.InvocationTargetException
[java] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
[java] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
[java] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl

.java:25)
[java] at java.lang.reflect.Method.invoke(Method.java:324)
[java] at org.jboss.chap2.ex0.ExCCEc.main(ExCCEc.java:58)
[java] Caused by: java.lang.ClassCastException
[java] at org.jboss.chap2.ex0.ExCtx.useValue(ExCtx.java:44)
[java] ... 5 more

Only the exception is shown here. The full output can be found in the logs/chap2-ex0c.log file. At line 55 of
ExCCEc.java we are invoking ExcCCECtx.useValue(Object) on the instance loaded and created in lines 37-48
using ucl1. The ExObj passed in is the one loaded and created in lines 25-35 via ucl0. The exception results
when the ExCtx.useValue code attempts to cast the argument passed in to a ExObj. To understand why this
fails consider the debugging output from the chap2-ex0c.log file shown in Example 2.4.

Example 2.4. The chap2-ex0c.log debugging output for the ExObj classes seen

[INFO,UCL0] ExObj Info
org.jboss.chap2.ex0.ExObj(113fe2).ClassLoader=java.net.URLClassLoader@6e3914
..java.net.URLClassLoader@6e3914
....file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-devel/examples/output/

chap2/j0.jar
++++CodeSource:

(file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-devel/examples/output/
chap2/j0.jar <no certificates>)

Implemented Interfaces:
++interface java.io.Serializable(7934ad)
++++ClassLoader: null
++++Null CodeSource

[INFO,ExCtx] useValue2.ExObj class
org.jboss.chap2.ex0.ExObj(415de6).ClassLoader=java.net.URLClassLoader@30e280
..java.net.URLClassLoader@30e280
....file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-devel/examples/output/

chap2/j0.jar
++++CodeSource:

(file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-devel/examples/output/
chap2/j0.jar <no certificates>)

Implemented Interfaces:
++interface java.io.Serializable(7934ad)
++++ClassLoader: null
++++Null CodeSource

The first output prefixed with [INFO,UCL0] shows that the ExObj class loaded at line ExCCEc.java:31 has a
hash code of 113fe2 and an associated URLClassLoader instance with a hash code of 6e3914, which corres-
ponds to ucl0. This is the class used to create the instance passed to the ExCtx.useValue method. The second
output prefixed with [INFO,ExCtx] shows that the ExObj class as seen in the context of the ExCtx.useValue

method has a hash code of 415de6 and a URLClassLoader instance with an associated hash code of 30e280,
which corresponds to ucl1. So even though the ExObj classes are the same in terms of actual bytecode since it
comes from the same j0.jar, the classes are different as seen by both the ExObj class hash codes, and the asso-
ciated URLClassLoader instances. Hence, attempting to cast an instance of ExObj from one scope to the other
results in the ClassCastException.

The JBoss JMX Microkernel

28

This type of error is common when one redeploys an application to which other applications are holding refer-
ences to classes from the redeployed application. For example, a standalone WAR accessing an EJB. If you are
redeploying an application, all dependent applications must flush their class references. Typically this requires
that the dependent applications themselves be redeployed.

An alternate means of allowing independent deployments to interact in the presence of redeployment would be
to isolate the deployments by configuring the EJB layer to use the standard call-by-value semantics rather than
the call-by-reference JBoss will default to for components collocated in the same VM. An example of how to
enable call-by-value semantics is presented in Chapter 5

2.2.2.2. IllegalAccessException - Doing what you should not

A java.lang.IllegalAccessException is thrown when one attempts to access a method or member that visib-
ility qualifiers do not allow. Typical examples are attempting to access private or protected methods or instance
variables. Another common example is accessing package protected methods or members from a class that ap-
pears to be in the correct package, but is really not due to caller and callee classes being loaded by different
class loaders. An example of this is illustrated by the code shown in Example 2.6.

Example 2.5. The ExIAEd class used to demonstrate IllegalAccessException due to duplicate class
loaders

package org.jboss.chap2.ex0;

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of IllegalAccessExceptions due to
* classes loaded by two class loaders.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class ExIAEd
{

public static void main(String[] args) throws Exception
{

ChapterExRepository.init(ExIAEd.class);

String chapDir = System.getProperty("chapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
URLClassLoader ucl0 = new URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);

StringBuffer buffer = new
StringBuffer("ExIAEd Info");

Debug.displayClassInfo(ExIAEd.class, buffer, false);
ucl0Log.info(buffer.toString());

Class ctxClass1 = ucl0.loadClass("org.jboss.chap2.ex0.ExCtx");
buffer.setLength(0);
buffer.append("ExCtx Info");
Debug.displayClassInfo(ctxClass1, buffer, false);
ucl0Log.info(buffer.toString());

The JBoss JMX Microkernel

29

Object ctx0 = ctxClass1.newInstance();

try {
Class[] types = {Object.class};
Method useValue =

ctxClass1.getDeclaredMethod("pkgUseValue", types);
Object[] margs = {null};
useValue.invoke(ctx0, margs);

} catch(Exception e) {
ucl0Log.error("Failed to invoke ExCtx.pkgUseValue", e);

}
}

}

The ExIAEd.main method uses reflection to load the ExCtx class via the ucl0 class loader while the ExIEAd

class was loaded by the application class loader. We will run this example to demonstrate how the IllegalAc-

cessException can occur and then look at the specific issue with the example. Run the example using the fol-
lowing command:

[orb@toki examples]$ ant -Dchap=chap2 -Dex=0d run-example
Buildfile: build.xml
...
[java] [ERROR,UCL0] Failed to invoke ExCtx.pkgUseValue
[java] java.lang.IllegalAccessException: Class org.jboss.chap2.ex0.ExIAEd

can not access a member of class org.jboss.chap2.ex0.ExCtx with modifiers ""
[java] at sun.reflect.Reflection.ensureMemberAccess(Reflection.java:57)
[java] at java.lang.reflect.Method.invoke(Method.java:317)
[java] at org.jboss.chap2.ex0.ExIAEd.main(ExIAEd.java:48)

The truncated output shown here illustrates the IllegalAccessException. The full output can be found in the
logs/chap2-ex0d.log file. At line 48 of ExIAEd.java the ExCtx.pkgUseValue(Object) method is invoked via
reflection. The pkgUseValue method has package protected access and even though both the invoking class
ExIAEd and the ExCtx class whose method is being invoked reside in the org.jboss.chap2.ex0 package, the
invocation is seen to be invalid due to the fact that the two classes are loaded by different class loaders. This
can be seen by looking at the debugging output from the chap2-ex0d.log file.

[INFO,UCL0] ExIAEd Info
org.jboss.chap2.ex0.ExIAEd(65855a).ClassLoader=sun.misc.Launcher$AppClassLoader@3f52a5
..sun.misc.Launcher$AppClassLoader@3f52a5
...
[INFO,UCL0] ExCtx Info
org.jboss.chap2.ex0.ExCtx(70eed6).ClassLoader=java.net.URLClassLoader@113fe2
..java.net.URLClassLoader@113fe2
...

The ExIAEd class is seen to have been loaded via the default application class loader instance
sun.misc.Launcher$AppClassLoader@3f52a5, while the ExCtx class was loaded by the
java.net.URLClassLoader@113fe2 instance. Because the classes are loaded by different class loaders, access
to the package protected method is seen to be a security violation. So, not only is type a function of both the
fully qualified class name and class loader, the package scope is as well.

An example of how this can happen in practise is to include the same classes in two different SAR deploy-
ments. If classes in the deployment have a package protected relationship, users of the SAR service may end up
loading one class from SAR class loading at one point, and then load another class from the second SAR at a
later time. If the two classes in question have a protected access relationship an IllegalAccessError will res-
ult. The solution is to either include the classes in a separate jar that is referenced by the SARs, or to combine
the SARs into a single deployment. This can either be a single SAR, or an EAR the includes both SARs.

2.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are

The JBoss JMX Microkernel

30

To address the type-safety problems of the early Java VMs, the notion of loading constraints were added to the
1.2 Java language spec. Loading constraints validate type expectations in the context of class loader scopes to
ensure that a class X is consistently the same class when multiple class loaders are involved. This is important
because Java allows for user defined class loaders. Linkage errors are essentially an extension of the class cast
exception that is enforced by the VM when classes are loaded and used.

To understand what loading constraints are and how they ensure type-safety we will first introduce the nomen-
clature of the Liang and Bracha paper along with an example from this paper. There are two type of class load-
ers, initiating and defining. An initiating class loader is one that a ClassLoader.loadClass method has been in-
voked on to initiate the loading of the named class. A defining class loader is the loader that calls one of the
ClassLoader.defineClass methods to convert the class byte code into a Class instance. The most complete
expression of a class is given by <C,Ld>

Li , where C is the fully qualified class name, Ld is the defining class
loader, and Li is the initiating class loader. In a context where the initiating class loader is not important the
type may be represented by <C,Ld>, while when the defining class loader is not important, the type may be rep-
resented by C

Li . In the latter case, there is still a defining class loader, its just not important what the identity
of the defining class loader is. Also, a type is completely defined by <C,Ld>. The only time the initiating loader
is relevant is when a loading constraint is being validated. Now consider the classes shown in Example 2.6.

Example 2.6. Classes demonstrating the need for loading constraints

class <C,L1> {
void f() {

<Spoofed, L1>L1x = <Delegated, L2>L2

x.secret_value = 1; // Should not be allowed
}

}

class <Delegated,L2> {
static <Spoofed, L2>L3 g() {...}
}

}

class <Spoofed, L1> {
public int secret_value;

}

class <Spoofed, L2> {
private int secret_value;

}

The class C is defined by L1 and so L1 is used to initiate loading of the classes Spoofed and Delegated refer-
enced in the C.f() method. The Spoofed class is defined by L1, but Delegated is defined by L2 because L1 del-
egates to L2. Since Delegated is defined by L2, L2 will be used to initiate loading of Spoofed in the context of
the Delegated.g() method. In this example both L1 and L2 define different versions of Spoofed as indicated by
the two versions shown at the end of Example 2.6. Since C.f() believes x is an instance of <Spoofed,L1> it is
able to access the private field secret_value of <Spoofed,L2> returned by Delegated.g() due to the 1.1 and
earlier Java VM's failure to take into account that a class type is determined by both the fully qualified name of
the class and the defining class loader.

Java 1.2 and beyond addresses this problem by generating loader constraints to validate type consistency when
the types being used are coming from different defining class loaders. For the Example 2.6 example, the VM
generates a constraint SpoofedL1=SpoofedL2 when the first line of method C.f() is verified to indicate that the
type Spoofed must be the same regardless of whether the load of Spoofed is initiated by L1 or L2. It does not
matter if L1 or L2, or even some other class loader defines Spoofed. All that matters is that there is only one

The JBoss JMX Microkernel

31

Spoofed class defined regardless of whether L1 or L2 was used to initiate the loading. If L1 or L2 have already
defined separate versions of Spoofed when this check is made a LinkageError will be generated immediately.
Otherwise, the constraint will be recorded and when Delegated.g() is executed, any attempt to load a duplic-
ate version of Spoofed will result in a LinkageError.

Now let's take a look at how a LinkageError can occur with a concrete example. Example 2.7 gives the ex-
ample main class along with the custom class loader used.

Example 2.7. A concrete example of a LinkageError

1: package org.jboss.chap2.ex0;
2: import java.io.File;
3: import java.net.URL;
4:
5: import org.apache.log4j.Logger;
6: import org.jboss.util.ChapterExRepository;
7: import org.jboss.util.Debug;
8:
9: /**
10: * An example of a LinkageError due to classes being defined by more
11: * than one class loader in a non-standard class loading environment.
12: *
13: * @author Scott.Stark@jboss.org
14: * @version $Revision: 1.11 $
15: */
16: public class ExLE
17: {
18: public static void main(String[] args)
19: throws Exception
20: {
21: ChapterExRepository.init(ExLE.class);
22:
23: String chapDir = System.getProperty("chapter.dir");
24: Logger ucl0Log = Logger.getLogger("UCL0");
25: File jar0 = new File(chapDir+"/j0.jar");
26: ucl0Log.info("jar0 path: "+jar0.toString());
27: URL[] cp0 = {jar0.toURL()};
28: Ex0URLClassLoader ucl0 = new Ex0URLClassLoader(cp0);
29: Thread.currentThread().setContextClassLoader(ucl0);
30: Class ctxClass1 = ucl0.loadClass("org.jboss.chap2.ex0.ExCtx");
31: Class obj2Class1 = ucl0.loadClass("org.jboss.chap2.ex0.ExObj2");
32: StringBuffer buffer = new StringBuffer("ExCtx Info");
33: Debug.displayClassInfo(ctxClass1, buffer, false);
34: ucl0Log.info(buffer.toString());
35: buffer.setLength(0);
36: buffer.append("ExObj2 Info, UCL0");
37: Debug.displayClassInfo(obj2Class1, buffer, false);
38: ucl0Log.info(buffer.toString());
39:
40: File jar1 = new File(chapDir+"/j1.jar");
41: Logger ucl1Log = Logger.getLogger("UCL1");
42: ucl1Log.info("jar1 path: "+jar1.toString());
43: URL[] cp1 = {jar1.toURL()};
44: Ex0URLClassLoader ucl1 = new Ex0URLClassLoader(cp1);
45: Class obj2Class2 = ucl1.loadClass("org.jboss.chap2.ex0.ExObj2");
46: buffer.setLength(0);
47: buffer.append("ExObj2 Info, UCL1");
48: Debug.displayClassInfo(obj2Class2, buffer, false);
49: ucl1Log.info(buffer.toString());
50:
51: ucl0.setDelegate(ucl1);
52: try {
53: ucl0Log.info("Try ExCtx.newInstance()");
54: Object ctx0 = ctxClass1.newInstance();
55: ucl0Log.info("ExCtx.ctor succeeded, ctx0: "+ctx0);
56: } catch(Throwable e) {
57: ucl0Log.error("ExCtx.ctor failed", e);
58: }

The JBoss JMX Microkernel

32

59: }
60: }

package org.jboss.chap2.ex0;

import java.net.URLClassLoader;
import java.net.URL;

import org.apache.log4j.Logger;

/**
* A custom class loader that overrides the standard parent delegation
* model
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class Ex0URLClassLoader extends URLClassLoader
{

private static Logger log = Logger.getLogger(Ex0URLClassLoader.class);
private Ex0URLClassLoader delegate;

public Ex0URLClassLoader(URL[] urls)
{

super(urls);
}

void setDelegate(Ex0URLClassLoader delegate)
{

this.delegate = delegate;
}

protected synchronized Class loadClass(String name, boolean resolve)
throws ClassNotFoundException

{
Class clazz = null;
if (delegate != null) {

log.debug(Integer.toHexString(hashCode()) +
"; Asking delegate to loadClass: " + name);

clazz = delegate.loadClass(name, resolve);
log.debug(Integer.toHexString(hashCode()) +

"; Delegate returned: "+clazz);
} else {

log.debug(Integer.toHexString(hashCode()) +
"; Asking super to loadClass: "+name);

clazz = super.loadClass(name, resolve);
log.debug(Integer.toHexString(hashCode()) +

"; Super returned: "+clazz);
}
return clazz;

}

protected Class findClass(String name)
throws ClassNotFoundException

{
Class clazz = null;
log.debug(Integer.toHexString(hashCode()) +

"; Asking super to findClass: "+name);
clazz = super.findClass(name);
log.debug(Integer.toHexString(hashCode()) +

"; Super returned: "+clazz);
return clazz;

}
}

The key component in this example is the URLClassLoader subclass Ex0URLClassLoader. This class loader im-
plementation overrides the default parent delegation model to allow the ucl0 and ucl1 instances to both load
the ExObj2 class and then setup a delegation relationship from ucl0 to ucl1. At lines 30 and 31. the ucl0

The JBoss JMX Microkernel

33

Ex0URLClassLoader is used to load the ExCtx and ExObj2 classes. At line 45 of ExLE.main the ucl1

Ex0URLClassLoader is used to load the ExObj2 class again. At this point both the ucl0 and ucl1 class loaders
have defined the ExObj2 class. A delegation relationship from ucl0 to ucl1 is then setup at line 51 via the
ucl0.setDelegate(ucl1) method call. Finally, at line 54 of ExLE.main an instance of ExCtx is created using
the class loaded via ucl0. The ExCtx class is the same as presented in Example 2.2, and the constructor was:

public ExCtx()
throws IOException

{
value = new ExObj();
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new StringBuffer("ctor.ExObj");
Debug.displayClassInfo(value.getClass(), buffer, false);
log.info(buffer.toString());
ExObj2 obj2 = value.ivar;
buffer.setLength(0);
buffer = new StringBuffer("ctor.ExObj.ivar");
Debug.displayClassInfo(obj2.getClass(), buffer, false);
log.info(buffer.toString());

}

Now, since the ExCtx class was defined by the ucl0 class loader, and at the time the ExCtx constructor is ex-
ecuted, ucl0 delegates to ucl1, line 24 of the ExCtx constructor involves the following expression which has
been rewritten in terms of the complete type expressions:

<ExObj2,ucl0>ucl0 obj2 = <ExObj,ucl1>ucl0 value * ivar

This generates a loading constraint of ExObj2
ucl0

= ExObj2
ucl1 since the ExObj2 type must be consistent

across the ucl0 and ucl1 class loader instances. Because we have loaded ExObj2 using both ucl0 and ucl1 pri-
or to setting up the delegation relationship, the constraint will be violated and should generate a LinkageError

when run. Run the example using the following command:

[nr@toki examples]$ ant -Dchap=chap2 -Dex=0e run-example
Buildfile: build.xml
...
[java] java.lang.LinkageError: loader constraints violated when linking org/jboss/chap2/ex0/ExObj2 class
[java] at org.jboss.chap2.ex0.ExCtx.<init>(ExCtx.java:24)
[java] at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
[java] at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39)
[java] at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27)
[java] at java.lang.reflect.Constructor.newInstance(Constructor.java:274)
[java] at java.lang.Class.newInstance0(Class.java:308)
[java] at java.lang.Class.newInstance(Class.java:261)
[java] at org.jboss.chap2.ex0.ExLE.main(ExLE.java:53)

As expected, a LinkageError is thrown while validating the loader constraints required by line 24 of the ExCtx

constructor.

2.2.2.3.1. Debugging Class Loading Issues

Debugging class loading issues comes down to finding out where a class was loaded from. A useful tool for this
is the code snippet shown in Example 2.8 taken from the org.jboss.util.Debug class of the book examples.

Example 2.8. Obtaining debugging information for a Class

Class clazz =...;
StringBuffer results = new StringBuffer();

ClassLoader cl = clazz.getClassLoader();
results.append("\n" + clazz.getName() + "(" +

Integer.toHexString(clazz.hashCode()) + ").ClassLoader=" + cl);

The JBoss JMX Microkernel

34

ClassLoader parent = cl;

while (parent != null) {
results.append("\n.."+parent);
URL[] urls = getClassLoaderURLs(parent);

int length = urls != null ? urls.length : 0;
for(int u = 0; u < length; u ++) {

results.append("\n...."+urls[u]);
}

if (showParentClassLoaders == false) {
break;

}
if (parent != null) {

parent = parent.getParent();
}

}

CodeSource clazzCS = clazz.getProtectionDomain().getCodeSource();
if (clazzCS != null) {

results.append("\n++++CodeSource: "+clazzCS);
} else {

results.append("\n++++Null CodeSource");
}

The key items are shown in bold. The first is that every Class object knows its defining ClassLoader and this is
available via the getClassLoader() method. The defines the scope in which the Class type is known as we
have just seen in the previous sections on class cast exceptions, illegal access exceptions and linkage errors.
From the ClassLoader you can view the hierarchy of class loaders that make up the parent delegation chain. If
the class loader is a URLClassLoader you can also see the URLs used for class and resource loading.

The defining ClassLoader of a Class cannot tell you from what location that Class was loaded. To determine
this you must obtain the java.security.ProtectionDomain and then the java.security.CodeSource. It is the
CodeSource that has the URL location from which the class originated. Note that not every Class has a Code-

Source. If a class is loaded by the bootstrap class loader then its CodeSource will be null. This will be the case
for all classes in the java.* and javax.* packages, for example.

Beyond that it may be useful to view the details of classes being loaded into the JBoss server. You can enable
verbose logging of the JBoss class loading layer using a Log4j configuration fragment like that shown in Ex-
ample 2.9.

Example 2.9. An example log4j.xml configuration fragment for enabling verbose class loading logging

<appender name="UCL" class="org.apache.log4j.FileAppender">
<param name="File" value="${jboss.server.home.dir}/log/ucl.log"/>
<param name="Append" value="false"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="[%r,%c{1},%t] %m%n"/>
</layout>

</appender>
<category name="org.jboss.mx.loading" additivity="false">

<priority value="TRACE" class="org.jboss.logging.XLevel"/>
<appender-ref ref="UCL"/>

</category>

This places the output from the classes in the org.jboss.mx.loading package into the ucl.log file of the serv-
er configurations log directory. Although it may not be meaningful if you have not looked at the class loading
code, it is vital information needed for submitting bug reports or questions regarding class loading problems. If

The JBoss JMX Microkernel

35

you have a class loading problem that appears to be a bug, submit it to the JBoss project on SourceForge and
include this log file as an attachment. If the log file is too big, compress it and mail it to
scott.stark@jboss.org.

2.2.2.4. Inside the JBoss Class Loading Architecture

Now that we have the role of class loaders in the Java type system defined, let's take a look at the JBoss class
loading architecture. Figure 2.3.

Figure 2.3. The core JBoss class loading components

The central component is the org.jboss.mx.loading.UnifiedClassLoader3 (UCL) class loader. This is an ex-
tension of the standard java.net.URLClassLoader that overrides the standard parent delegation model to use a
shared repository of classes and resources. This shared repository is the
org.jboss.mx.loading.UnifiedLoaderRepository3. Every UCL is associated with a single UnifiedLoad-

erRepository3, and a UnifiedLoaderRepository3 typically has many UCLs. A UCL may have multiple
URLs associated with it for class and resource loading. Deployers use the top-level deployment's UCL as a
shared class loader and all deployment archives are assigned to this class loader. We will talk about the JBoss
deployers and their interaction with the class loading system in more detail latter in Section 2.4.2.

When a UCL is asked to load a class, it first looks to the repository cache it is associated with to see if the class
has already been loaded. Only if the class does not exist in the repository will it be loaded into the repository by
the UCL. By default, there is a single UnifiedLoaderRepository3 shared across all UCL instances. This means
the UCLs form a single flat class loader namespace. The complete sequence of steps that occur when a Unfied-

ClassLoader3.loadClass(String, boolean) method is called is:

1. Check the UnifiedLoaderRepository3 classes cache associated with the UnifiedClassLoader3. If the
class is found in the cache it is returned.

2. Else, ask the UnfiedClassLoader3 if it can load the class. This is essentially a call to the superclass URL-

ClassLoader.loadClass(String, boolean) method to see if the class is among the URLs associated
with the class loader, or visible to the parent class loader. If the class is found it is placed into the reposit-
ory classes cache and returned.

3. Else, the repository is queried for all UCLs that are capable of providing the class based on the repository
package name to UCL map. When a UCL is added to a repository an association between the package
names available in the URLs associated with the UCL is made, and a mapping from package names to the

The JBoss JMX Microkernel

36

UCLs with classes in the package is updated. This allows for a quick determination of which UCLs are
capable of loading the class. The UCLs are then queried for the requested class in the order in which the
UCLs were added to the repository. If a UCL is found that can load the class it is returned, else a
java.lang.ClassNotFoundException is thrown.

2.2.2.4.1. Viewing Classes in the Loader Repository

Another useful source of information on classes is the UnifiedLoaderRepository itself. This is an MBean that
contains operations to display class and package information. The default repository is located under a standard
JMX name of JMImplementation:name=Default,service=LoaderRepository, and its MBean can be accessed
via the JMX console by following its link from the front page. The JMX console view of this MBean is shown
in Figure 2.4.

Figure 2.4. The default class LoaderRepository MBean view in the JMX console

Two useful operations you will find here are getPackageClassLoaders(String) and displayC-

lassInfo(String). The getPackageClassLoaders operation returns a set of class loaders that have been in-
dexed to contain classes or resources for the given package name. The package name must have a trailing peri-
od. If you type in the package name org.jboss.ejb., the following representation is displayed:

[org.jboss.mx.loading.UnifiedClassLoader3@7dac02{ url=file:/private/tmp/jboss-3.2.6/server/default/tmp/deploy/tmp9103jboss-service.xml ,addedOrder=2}]

The JBoss JMX Microkernel

37

This is the string representation of the set. It shows one UnifiedClassLoader3 instance with a primary URL
pointing to the default/conf/jboss-service.xml descriptor. This is the second class loader added to the re-
pository (shown by the addedOrder=2) and it is the class loader that owns all of the JARs in the lib directory of
the server configuration (e.g., server/default/lib). If you enter the package name
org.jboss.jmx.adaptor.html., then the following set will be displayed:

[org.jboss.mx.loading.UnifiedClassLoader3@7dac02{ url=file:/private/tmp/jboss-3.2.6/server/default/tmp/deploy/tmp9103jboss-service.xml ,addedOrder=2}]

This time there are two UnifiedClassLoader3 instances, one for the default/deploy/jmx-console.war and
one for the default/deploy/jmx-console2.war.

The view the information for a given class, use the displayClassInfo operation, passing in the fully qualified
name of the class to view. For example, if we use org.jboss.jmx.adaptor.html.HtmlAdaptorServlet which
is from the package we just looked at, the following description is displayed:

org.jboss.jmx.adaptor.html.HtmlAdaptorServlet Information
Repository cache version:
org.jboss.jmx.adaptor.html.HtmlAdaptorServlet(26f678).ClassLoader=org.jboss.mx.loading.Uni
fiedClassLoader3@30cd4a{ url=file:/private/tmp/jboss-3.2.6/server/default/deploy/jmx-conso
le.war/ ,addedOrder=32}
..org.jboss.mx.loading.UnifiedClassLoader3@30cd4a{ url=file:/private/tmp/jboss-3.2.6/serve
r/default/deploy/jmx-console.war/ ,addedOrder=32}
....file:/private/tmp/jboss-3.2.6/server/default/deploy/jmx-console.war/
....file:/private/tmp/jboss-3.2.6/server/default/deploy/jmx-console.war/WEB-INF/classes/
..org.jboss.system.server.NoAnnotationURLClassLoader@e48e1b
..sun.misc.Launcher$AppClassLoader@33056f
....file:/private/tmp/jboss-3.2.6/bin/run.jar
....file:/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home/lib/tools.jar
..sun.misc.Launcher$ExtClassLoader@94af67
....file:/System/Library/Java/Extensions/CoreAudio.jar
....file:/System/Library/Java/Extensions/j3daudio.jar
....file:/System/Library/Java/Extensions/j3dcore.jar
....file:/System/Library/Java/Extensions/j3dsupport.jar
....file:/System/Library/Java/Extensions/j3dutils.jar
....file:/System/Library/Java/Extensions/jai_codec.jar
....file:/System/Library/Java/Extensions/jai_core.jar
....file:/System/Library/Java/Extensions/libJ3D.jnilib
....file:/System/Library/Java/Extensions/libJ3DAudio.jnilib
....file:/System/Library/Java/Extensions/libJ3DUtils.jnilib
....file:/System/Library/Java/Extensions/libmlib_jai.jnilib
....file:/System/Library/Java/Extensions/mlibwrapper_jai.jar
....file:/System/Library/Java/Extensions/MRJToolkit.jar
....file:/System/Library/Java/Extensions/QTJava.zip
....file:/System/Library/Java/Extensions/QTJSupport.jar
....file:/System/Library/Java/Extensions/vecmath.jar
....file:/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home/lib/ext/apple_pro
vider.jar
....file:/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home/lib/ext/ldapsec.j
ar
....file:/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home/lib/ext/localedat
a.jar
....file:/System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home/lib/ext/sunjce_pr
ovider.jar
++++CodeSource: (file:/private/tmp/jboss-3.2.6/server/default/deploy/jmx-console.war/WEB-I
NF/classes/)
Implemented Interfaces:

Instance0 found in UCL: org.jboss.mx.loading.UnifiedClassLoader3@30cd4a{ url=file:/pri
vate/tmp/jboss-3.2.6/server/default/deploy/jmx-console.war/ ,addedOrder=32}

Instance1 found in UCL: org.jboss.mx.loading.UnifiedClassLoader3@492aff{ url=file:/pri
vate/tmp/jboss-3.2.6/server/default/deploy/jmx-console2.war/ ,addedOrder=34}

Instance2 via UCL: org.jboss.mx.loading.UnifiedClassLoader3@30cd4a{ url=file:/private/

The JBoss JMX Microkernel

38

tmp/jboss-3.2.6/server/default/deploy/jmx-console.war/ ,addedOrder=32}

The information is a dump of the information for the Class instance in the loader repository if one has been
loaded, followed by the class loaders that are seen to have the class file available. If a class is seen to have more
than one class loader associated with it, then there is the potential for class loading related errors.

2.2.2.4.2. Scoping Classes

If you need to deploy multiple versions of an application the default 3.x class loading model would require that
each application be deployed in a separate JBoss server. Sometimes this is desirable as you have more control
over security and resource monitoring, but it can be difficult to manage multiple server instances. An alternat-
ive mechanism exists that allows multiple versions of an application to be deployed using deployment based
scoping.

With deployment based scoping, each deployment creates its own class loader repository in the form of a Heir-

archicalLoaderRepository3 that looks first to the UnifiedClassLoader3 instances of the deployment units
included in the EAR before delegating to the default UnifiedLoaderRepository3. To enable an EAR specific
loader repository, you need to create a META-INF/jboss-app.xml descriptor as shown in Example 2.10.

Example 2.10. An example jboss-app.xml descriptor for enabled scoped class loading at the EAR level.

<jboss-app>
<loader-repository>some.dot.com:loader=webtest.ear</loader-repository>

</jboss-app>

The value of the loader-repository element is the JMX object name to assign to the repository created for the
EAR. This must be unique and valid JMX ObjectName, but the actual name is not important.

2.2.2.4.3. The Complete Class Loading Model

The previous discussion of the core class loading components introduced the custom UnifiedClassLoader3

and UnifiedLoaderRepository3 classes that form a shared class loading space. The complete class loading
picture must also include the parent class loader used by UnifiedClassLoader3s as well as class loaders intro-
duced for scoping and other speciality class loading purposes. Figure 2.5 shows an outline of the class hier-
archy that would exist for an EAR deployment containing EJBs and WARs.

The JBoss JMX Microkernel

39

Figure 2.5. A complete class loader view

The following points apply to this figure:

• System ClassLoaders: The System ClassLoaders node refers to either the thread context class loader
(TCL) of the VM main thread or of the thread of the application that is loading the JBoss server if it is em-
bedded.

• ServerLoader: The ServerLoader node refers to the a URLClassLoader that delegates to the System Class-
Loaders and contains the following boot URLs:

• All URLs referenced via the jboss.boot.library.list system property. These are path specifications
relative to the libraryURL defined by the jboss.lib.url property. If there is no jboss.lib.url prop-
erty specified, it defaults to jboss.home.url + /lib/. If there is no jboss.boot.library property spe-
cified, it defaults to jaxp.jar, log4j-boot.jar, jboss-common.jar, and jboss-system.jar.

• The JAXP JAR which is either crimson.jar or xerces.jar depending on the -j option to the Main

The JBoss JMX Microkernel

40

entry point. The default is crimson.jar.

• The JBoss JMX jar and GNU regex jar, jboss-jmx.jar and gnu-regexp.jar.

• Oswego concurrency classes JAR, concurrent.jar

• Any JARs specified as libraries via -L command line options

• Any other JARs or directories specified via -C command line options

• Server: The Server node represent a collection of UCLs created by the org.jboss.system.server.Server

interface implementation. The default implementation creates UCLs for the patchDir entries as well as the
server conf directory. The last UCL created is set as the JBoss main thread context class loader. This will
be combined into a single UCL now that multiple URLs per UCL are supported.

• All UnifiedClassLoader3s: The All UnifiedClassLoader3 node represents the UCLs created by deployers.
This covers EARs, jars, WARs, SARs and directories seen by the deployment scanner as well as JARs ref-
erenced by their manifests and any nested deployment units they may contain. This is a flat namespace and
there should not be multiple instances of a class in different deployment JARs. If there are, only the first
loaded will be used and the results may not be as expected. There is a mechanism for scoping visibility
based on EAR deployment units that we discussed in Section 2.2.2.4.2. Use this mechanism if you need to
deploy multiple versions of a class in a given JBoss server.

• EJB DynClassLoader: The EJB DynClassLoader node is a subclass of URLClassLoader that is used to
provide RMI dynamic class loading via the simple HTTP WebService. It specifies an empty URL[] and del-
egates to the TCL as its parent class loader. If the WebService is configured to allow system level classes to
be loaded, all classes in the UnifiedLoaderRepository3 as well as the system classpath are available via
HTTP.

• EJB ENCLoader: The EJB ENCLoader node is a URLClassLoader that exists only to provide a unique
context for an EJB deployment's java:comp JNDI context. It specifies an empty URL[] and delegates to the
EJB DynClassLoader as its parent class loader.

• Web ENCLoader: The Web ENCLoader node is a URLClassLoader that exists only to provide a unique
context for a web deployment's java:comp JNDI context. It specifies an empty URL[] and delegates to the
TCL as its parent class loader.

• WAR Loader: The WAR Loader is a servlet container specific classloader that delegates to the Web ENC-
Loader as its parent class loader. The default behavior is to load from its parent class loader and then the
WAR WEB-INFclasses and lib directories. If the servlet 2.3 class loading model is enabled it will first load
from the its WEB-INF directories and then the parent class loader.

In its current form there are some advantages and disadvantages to the JBoss class loading architecture. Ad-
vantages include:

• Classes do not need to be replicated across deployment units in order to have access to them.

• Many future possibilities including novel partitioning of the repositories into domains, dependency and con-
flict detection, etc.

Disadvantages include:

• Existing deployments may need to be repackaged to avoid duplicate classes. Duplication of classes in a

The JBoss JMX Microkernel

41

loader repository can lead to class cast exceptions and linkage errors depending on how the classes are
loaded.

• Deployments that depend on different versions of a given class need to be isolated in separate EARs and a
unique HeirarchicalLoaderRepository3 defined using a jboss-app.xml descriptor.

2.2.3. JBoss XMBeans

XMBeans are the JBoss JMX implementation version of the JMX model MBean. XMBeans have the richness
of the dynamic MBean metadata without the tedious programming required by a direct implementation of the
DynamicMBean interface. The JBoss model MBean implementation allows one to specify the management inter-
face of a component through a XML descriptor, hence the X in XMBean. In addition to providing a simple
mechanism for describing the metadata required for a dynamic MBean, XMBeans also allow for the specifica-
tion of attribute persistence, caching behavior, and even advanced customizations like the MBean implementa-
tion interceptors. The high level elements of the jboss_xmbean_1_0.dtd for the XMBean descriptor is given in
Figure 2.6.

Figure 2.6. The JBoss 1.0 XMBean DTD Overview (jboss_xmbean_1_0.dtd)

The mbean element is the root element of the document containing the required elements for describing the
management interface of one MBean (constructors, attributes, operations and notifications). It also includes an

The JBoss JMX Microkernel

42

optional description element, which can be used to describe the purpose of the MBean, as well as an optional
descriptors element which allows for persistence policy specification, attribute caching, etc.

2.2.3.1. Descriptors

The descriptors element contains all the descriptors for a containing element, as subelements. The descriptors
suggested in the JMX specification as well as those used by JBoss have predefined elements and attributes,
whereas custom descriptors have a generic descriptor element with name and value attributes as show in Fig-
ure 2.7.

Figure 2.7. The descriptors element content model

The key descriptors child elements include:

• interceptors: The interceptors element specifies a customized stack of interceptors that will be used in

The JBoss JMX Microkernel

43

place of the default stack. Currently this is only used when specified at the MBean level, but it could define
a custom attribute or operation level interceptor stack in the future. The content of the interceptors element
specifies a custom interceptor stack. If no interceptors element is specified the standard ModelMBean inter-
ceptors will be used. The standard interceptors are:

• org.jboss.mx.interceptor.PersistenceInterceptor

• org.jboss.mx.interceptor.MBeanAttributeInterceptor

• org.jboss.mx.interceptor.ObjectReferenceInterceptor

When specifying a custom interceptor stack you would typically include the standard interceptors along
with your own unless you are replacing the corresponding standard interceptor.

Each interceptor element content value specifies the fully qualified class name of the interceptor imple-
mentation, and the class must implement the org.jboss.mx.interceptor.Interceptor interface. The in-
terceptor class must also have either a no-arg constructor, or a constructor that accepts a
(javax.management.MBeanInfo, org.jboss.mx.server.MBeanInvoker) pair.

The interceptor elements may have any number of attributes that correspond to JavaBean style properties on
the interceptor class implementation. For each interceptor element attribute specified, the interceptor
class is queried for a matching setter method. The attribute value is converted to the true type of the inter-
ceptor class property using the java.beans.PropertyEditor associated with the type. It is an error to spe-
cify an attribute for which there is no setter or PropertyEditor.

• persistence: The persistence element allows the specification of the persistPolicy, persistPeriod,
persistLocation, and persistName persistence attributes suggested by the JMX specification. The persist-
ence element attributes are:

• persistPolicy: The persistPolicy attribute defines when attributes should be persisted and its value
must be one of

• Never: attribute values are transient values that are never persisted

• OnUpdate: attribute values are persisted whenever they are updated

• OnTimer: attribute values are persisted based on the time given by the persistPeriod.

• NoMoreOftenThan: attribute values are persisted when updated unless but no more oten than the
persistPeriod.

• persistPeriod: The persistPeriod attribute gives the update frequency in milliseconds if the perisit-

Policy attribute is NoMoreOftenThan or OnTimer.

• persistLocation: The persistLocation attribute specifies the location of the persistence store. Its form
depends on the JMX peristence implementation. Currently this should refer to a directory into which the
attributes will be serialized if using the default JBoss persistence manager.

• persistName: The persistName attribute can be used in conjunction with the persistLocation attrib-
ute to further qualify the persistent store location. For a directory persistLocation the persistName

specifies the file to which the attributes are stored within the directory.

• currencyTimeLimit: The currencyTimeLimit element specifies the time in seconds that a cached value of

The JBoss JMX Microkernel

44

an attribute remains valid. Its value attribute gives the time in seconds. A 0 value indicates that an attribute
value should always be retrieved from the MBean and never cached. A -1 value indicates that a cache value
is always valid.

• state-action-on-update: The state-action-on-update element specifies the what happens to an MBean
when one of its attributes is updated. The action is given by the value attribute. Its value attribute defines
what happens to the mbean lifecycle state when one of its attributes is update. It must be one of: keep-
running, restart, reconfigure, reinstantiate. However, note that this descriptor is not currently used.

• display-name: The display-name element specifies the human friendly name of an item.

• default: The default element specifes a default value to use when a field has not been set. Note that this
value is not written to the MBean on startup as is the case with the jboss-service.xml attribute element
content value. Rather, the default value is used only if there is no attribute accessor defined, and there is no
value element defined.

• value: The value element specifies a management attribute's current value. Unlike the default element, the
value element is written through to the MBean on startup provided there is a setter method available.

• persistence-manager: The persistence-manager element gives the name of a class to use as the persist-
ence manager. The value attribute specifies the class name that supplies the
org.jboss.mx.persistence.PersistenceManager interface implementation. The only implementation
currently supplied by JBoss is the org.jboss.mx.persistence.ObjectStreamPersistenceManager which
serializes the ModelMBeanInfo content to a file using Java serialization.

• descriptor: The descriptor element specifies an arbitrary descriptor not known to JBoss. Its name attribute
specifies the type of the descriptor and its value attribute specifies the descriptor value. The descriptor

element allows for the attachment of arbitrary management metadata.

Note that any of the constructor, attribute, operation or notification elements may have a descriptors element
to specify the specification defined descriptors as well as arbitrary extension descriptor settings.

2.2.3.2. The Management Class

The class element specifies the fully qualified name of the managed object whose management interface is de-
scribed by the XMBean descriptor.

2.2.3.3. The Constructors

The constructor element(s) specifies the constructors available for creating an instance of the managed object.
The constructor element and its content model are shown in Figure 2.8.

The JBoss JMX Microkernel

45

Figure 2.8. The XMBean constructor element and its content model

The key child elements are:

• description: A description of the constructor.

• name: The name of the constructor, which must be the same as the implementation class.

• parameter: The parameter element describes a constructor parameter. The parameter element has the fol-
lowing attributes:

• description: An optional description of the parameter.

• name: The required variable name of the parameter.

• type: The required fully qualified class name of the parameter type.

• descriptors: Any descriptors to associate with the constructor metadata.

2.2.3.4. The Attributes

The attribute element(s) specifies the management attributes exposed by the MBean. The attribute element
and its content model are shown in Figure 2.9.

The JBoss JMX Microkernel

46

Figure 2.9. The XMBean attribute element and its content model

The attribute element supported attributes include:

• access: The optional access attribute defines the read/write access modes of an attribute. It must be one of:

• read-only: The attribute may only be read.

• write-only: The attribute may only be written.

• read-write: The attribute is both readable and writable. This is the implied default.

• getMethod: The getMethod attribute defines the name of the method which reads the named attribute. This
must be specified if the managed attribute should be obtained from the MBean instance.

• setMethod: The setMethod attribute defines the name of the method which writes the named attribute. This
must be specified if the managed attribute should be obtained from the MBean instance.

The key child elements of the attribute element include:

• description: A description of the attribute.

• name: The name of the attribute as would be used in the MBeanServer.getAttribute() operation.

• type: The fully qualified class name of the attribute type.

• descriptors: Any additional desciptors that affect the attribute persistence, caching, default value, etc.

2.2.3.5. The Operations

The management operations exposed by the XMBean are specified via one or more operation elements. The

The JBoss JMX Microkernel

47

operation element and its content model are shown in Figure 2.10.

Figure 2.10. The XMBean operation element and its content model

The impact attribute defines the impact of executing the operation and must be one of:

• ACTION: The operation changes the state of the MBean component (write operation)

• INFO: The operation should not alter the state of the MBean component (read operation).

• ACTION_INFO: The operation behaves like a read/write operation.

The child elements are:

• description: This element specifies a human readable description of the operation.

• name: This element contains the operation's name

• parameter: This element describes the operation's signature.

• return-type: This element contains a fully qualified class name of the return type from this operation. If not
specified, it defaults to void.

• descriptors: Any descriptors to associate with the operation metadata.

2.2.3.6. Notifications

The notification element(s) describes the management notifications that may be emitted by the XMBean.

The JBoss JMX Microkernel

48

The notification element and its content model is shown in Figure 2.11.

Figure 2.11. The XMBean notification element and content model

The child elements are:

• description: This element gives a human readable description of the notification.

• name: This element contains the fully qualified name of the notification class.

• notification-type: This element contains the dot-separated notification type string.

• descriptors: Any descriptors to associate with the notification metadata.

For a reference of the complete DTD content model see the expanded view of the complete provided in Fig-
ure 2.12. We will work through examples of creating an XMBeans when we discuss the JBoss MBean services
notion. See Section 2.4.3.2 for these examples.

The JBoss JMX Microkernel

49

Figure 2.12. An expanded view of the jboss_xmbean_1_0 DTD

2.3. Connecting to the JMX Server

JBoss includes adaptors that allow access to the JMX MBeanServer from outside of the JBoss server VM. The
current adaptors include HTML, an RMI interface, and an EJB.

2.3.1. Inspecting the Server - the JMX Console Web Application

JBoss comes with its own implementation of a JMX HTML adaptor that allows one to view the server's
MBeans using a standard web browser. The default URL for the console web application is ht-
tp://localhost:8080/jmx-console/. If you browse this location you will see something similar to that presented in
Figure 2.13.

The JBoss JMX Microkernel

50

http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

Figure 2.13. The JBoss JMX console web application agent view

The top view is called the agent view and it provides a listing of all MBeans registered with the MBeanServer

sorted by the domain portion of the MBean's ObjectName. Under each domain are the MBeans under that do-
main. When you select one of the MBeans you will be taken to the MBean view. This allows one to view and
edit an MBean's attributes as well as invoke operations. As an example, Figure 2.14 shows the MBean view for
the jboss.system:type=Server MBean.

The JBoss JMX Microkernel

51

Figure 2.14. The MBean view for the "jboss.system:type=Server" MBean

The source code for the JMX console web application is located in the varia module under the src/

main/org/jboss/jmx directory. Its web pages are located under varia/src/resources/jmx. The application is
a simple MVC servlet with JSP views that utilize the MBeanServer.

2.3.1.1. Securing the JMX Console

Since the JMX console web application is just a standard servlet, it may be secured using standard J2EE role
based security. The jmx-console.war that is deployed as an unpacked WAR that includes template settings for
quickly enabling simple username and password based access restrictions. If you look at the jmx-console.war

in the server/default/deploy directory you will find the web.xml and jboss-web.xml descriptors in the WEB-

INF directory and a jmx-console-roles.properties and jmx-console-users.properties file under WEB-INF/classes

The JBoss JMX Microkernel

52

By uncommenting the security sections of the web.xml and jboss-web.xml descriptors as shown in Ex-
ample 2.11, you enable HTTP basic authentication that restricts access to the jmx-console application to the
user admin with password admin. The username and password are determined by the admin=admin line in the
jmx-console-users.properties file.

Example 2.11. The jmx-console.war web.xml descriptors with the security elements uncommented.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<!-- ... -->

<!-- A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want and
uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
secured access to the HTML JMX console.

-->
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description> An example security config that only allows users with

the role JBossAdmin to access the HTML JMX console web
application </description>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>JBoss JMX Console</realm-name>

</login-config>
<security-role>

<role-name>JBossAdmin</role-name>
</security-role>

</web-app>

Example 2.12. The jmx-console.war jboss-web.xml descriptors with the security elements uncommented.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss-web

PUBLIC "-//JBoss//DTD Web Application 2.3//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_3_0.dtd">

<jboss-web>
<!--

Uncomment the security-domain to enable security. You will
need to edit the htmladaptor login configuration to setup the
login modules used to authentication users.

-->
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

Make these changes and then when you try to access the JMX Console URL. You will see a dialog similar to
that shown in Figure 2.15.

The JBoss JMX Microkernel

53

Figure 2.15. The jmx-console basic HTTP login dialog.

Its generally a bad idea to use the properties files for securing access to the JMX console application. To see
how to properly configure the security settings of web applications see Chapter 8.

2.3.2. Connecting to JMX Using RMI

JBoss supplies an RMI interface for connecting to the JMX MBeanServer. This interface is
org.jboss.jmx.adaptor.rmi.RMIAdaptor, and it is shown in Example 2.13.

Example 2.13. The RMIAdaptor interface

/*
* JBoss, the OpenSource J2EE webOS
*
* Distributable under LGPL license.
* See terms of license at gnu.org.
*/

package org.jboss.jmx.adaptor.rmi;

import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.ObjectName;
import javax.management.QueryExp;
import javax.management.ObjectInstance;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import javax.management.MBeanInfo;

import javax.management.AttributeNotFoundException;
import javax.management.InstanceAlreadyExistsException;
import javax.management.InstanceNotFoundException;
import javax.management.IntrospectionException;
import javax.management.InvalidAttributeValueException;
import javax.management.ListenerNotFoundException;

The JBoss JMX Microkernel

54

import javax.management.MBeanException;
import javax.management.MBeanRegistrationException;
import javax.management.NotCompliantMBeanException;
import javax.management.OperationsException;
import javax.management.ReflectionException;

public interface RMIAdaptor
extends java.rmi.Remote

{

public ObjectInstance createMBean(String pClassName,
ObjectName pName)

throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
RemoteException;

public ObjectInstance createMBean(String pClassName,
ObjectName pName,
ObjectName pLoaderName)

throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
InstanceNotFoundException,
RemoteException;

public ObjectInstance createMBean(String pClassName,
ObjectName pName,
Object[] pParams,
String[] pSignature)

throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
RemoteException;

public ObjectInstance createMBean(String pClassName,
ObjectName pName,
ObjectName pLoaderName,
Object[] pParams,
String[] pSignature)

throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
InstanceNotFoundException,
RemoteException;

public void unregisterMBean(ObjectName pName)
throws InstanceNotFoundException,

MBeanRegistrationException,
RemoteException;

public ObjectInstance getObjectInstance(ObjectName pName)
throws InstanceNotFoundException,

RemoteException;

public Set queryMBeans(ObjectName pName, QueryExp pQuery)
throws RemoteException;

public Set queryNames(ObjectName pName, QueryExp pQuery)
throws RemoteException;

public boolean isRegistered(ObjectName pName)
throws RemoteException;

The JBoss JMX Microkernel

55

public boolean isInstanceOf(ObjectName pName, String pClassName)
throws InstanceNotFoundException,

RemoteException;

public Integer getMBeanCount()
throws RemoteException;

public Object getAttribute(ObjectName pName, String pAttribute)
throws MBeanException,

AttributeNotFoundException,
InstanceNotFoundException,
ReflectionException,
RemoteException;

public AttributeList getAttributes(ObjectName pName,
String[] pAttributes)

throws InstanceNotFoundException,
ReflectionException,
RemoteException;

public void setAttribute(ObjectName pName, Attribute pAttribute)
throws InstanceNotFoundException,

AttributeNotFoundException,
InvalidAttributeValueException,
MBeanException,
ReflectionException,
RemoteException;

public AttributeList setAttributes(ObjectName pName,
AttributeList pAttributes)

throws InstanceNotFoundException,
ReflectionException,
RemoteException;

public Object invoke(ObjectName pName, String pActionName,
Object[] pParams, String[] pSignature)

throws InstanceNotFoundException,
MBeanException,
ReflectionException,
RemoteException;

public String getDefaultDomain()
throws RemoteException;

public void addNotificationListener(ObjectName pName,
ObjectName pListener,
NotificationFilter pFilter,
Object pHandback)

throws InstanceNotFoundException,
RemoteException;

public void removeNotificationListener(ObjectName pName,
ObjectName pListener)

throws InstanceNotFoundException,
ListenerNotFoundException,
RemoteException;

public MBeanInfo getMBeanInfo(ObjectName pName)
throws InstanceNotFoundException,

IntrospectionException,
ReflectionException,
RemoteException;

}

The RMIAdaptor interface was bound into JNDI by the org.jboss.jmx.adaptor.rmi.RMIAdaptorService

MBean, but as of 3.2.2 this service has been removed from the dist deploy directory by default. It can still be

The JBoss JMX Microkernel

56

found in the docs/examples/jmx directory, but it has been deprecated in favor of the invoker adaptor service.
This service also supports the RMIAdaptor interface and its configuration also provides a binding of this inter-
face in the default location of jmx/rmi/RMIAdaptor for backwards compatibility with existing clients. The RMI-

AdaptorService still has utility for remote clients that need to receive JMX notifications. The invoker adaptor
service does not yet suppor this capability so if this is required, the jmx-invoker-adaptor-server.sar must be
replaced with the jmx-rmi-adaptor.sar from the examples directory.

The RMIAdaptorService is deployed as the jmx-rmi-adaptor.sar package, and supports the following attrib-
utes:

• JndiName: The JNDI name under which the RMIAdaptor interface will be bound. The default name is
jmx/rmi/RMIAdaptor.

• RMIObjectPort: The server side listening port number for the exported RMI object. This defaults to 0
meaning choose an anonymous available port.

• ServerAddress: The server interface name or IP address to bind the export RMI listening port to. This de-
faults to an empty value meaning to bind on all available interfaces.

• Backlog: The RMI object server socket backlog of client connection requests that will be accepted before a
connection error occurs.

Example 2.14 shows a client that makes use of the RMIAdaptor interface to query the MBeanInfo for the JN-

DIView MBean. It also invokes the MBean's list(boolean) method and displays the result.

Example 2.14. A JMX client that uses the RMIAdaptor

public class JMXBrowser
{

/**
* @param args the command line arguments
*/
public static void main(String[] args)

throws Exception
{

InitialContext ic = new InitialContext();
RMIAdaptor server = (RMIAdaptor) ic.lookup("jmx/rmi/RMIAdaptor");

// Get the MBeanInfo for the JNDIView MBean
ObjectName name = new ObjectName("jboss:service=JNDIView");
MBeanInfo info = server.getMBeanInfo(name);
System.out.println("JNDIView Class: "+info.getClassName());

MBeanOperationInfo[] opInfo = info.getOperations();
System.out.println("JNDIView Operations: ");

for (int o = 0; o < opInfo.length; o ++) {
MBeanOperationInfo op = opInfo[o];

String returnType = op.getReturnType();
String opName = op.getName();

System.out.print(" +"+returnType+" "+opName+"(");

MBeanParameterInfo[] params = op.getSignature();
for (int p = 0; p < params.length; p++) {

MBeanParameterInfo paramInfo = params[p];

String pname = paramInfo.getName();
String type = paramInfo.getType();

if (pname.equals(type)) {

The JBoss JMX Microkernel

57

System.out.print(type);
} else {

System.out.print(type+" "+name);
}

if (p < params.length-1) {
System.out.print(',');

}
}
System.out.println(")");

}

// Invoke the list(boolean) op
String[] sig = {"boolean"};
Object[] opArgs = {Boolean.TRUE};
Object result = server.invoke(name,

"list", opArgs, sig);
System.out.println("JNDIView.list(true) output:\n"+result);

}
}

To test the client access using the RMIAdaptor, run the following:

[orb@toki examples]$ ant -Dchap=chap2 -Dex=4 run-example
Buildfile: build.xml

...

run-example4:
[java] JNDIView Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIView Operations:
[java] + java.lang.String list(boolean jboss:service=JNDIView)
[java] + java.lang.String listXML()
[java] + void create()
[java] + void start()
[java] + void stop()
[java] + void destroy()
[java] + void jbossInternalLifecycle(java.lang.String jboss:service=JNDIView)
[java] + java.lang.String getName()
[java] + int getState()
[java] + java.lang.String getStateString()
[java] JNDIView.list(true) output:
[java] <h1>java: Namespace</h1>
[java] <pre>
[java] +- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
[java] +- DefaultDS (class: org.jboss.resource.adapter.jdbc.WrapperDataSource)
[java] +- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFacto

ry)
[java] +- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
[java] +- comp (class: javax.naming.Context)
[java] +- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
[java] +- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
[java] +- jaas (class: javax.naming.Context)
[java] | +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
[java] | +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
[java] | +- HsqlDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)
[java] +- timedCacheFactory (class: javax.naming.Context)
[java] Failed to lookup: timedCacheFactory, errmsg=null
[java] +- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPro

pagationContextFactory)
[java] +- Mail (class: javax.mail.Session)
[java] +- StdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
[java] +- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPro

pagationContextImporter)
[java] +- TransactionManager (class: org.jboss.tm.TxManager)
[java] </pre>
[java] <h1>Global JNDI Namespace</h1>
[java] <pre>
[java] +- HAILConnectionFactory[link -> ConnectionFactory] (class: javax.naming.

The JBoss JMX Microkernel

58

LinkRef)
[java] +- jmx (class: org.jnp.interfaces.NamingContext)
[java] | +- invoker (class: org.jnp.interfaces.NamingContext)
[java] | | +- RMIAdaptor (proxy: $Proxy26 implements interface org.jboss.jmx.ad

aptor.rmi.RMIAdaptor,interface org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)
[java] | +- rmi (class: org.jnp.interfaces.NamingContext)
[java] | | +- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class: javax.namin

g.LinkRef)
[java] +- HTTPXAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
[java] +- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
[java] +- UserTransactionSessionFactory (proxy: $Proxy13 implements interface org.j

boss.tm.usertx.interfaces.UserTransactionSessionFactory)
[java] +- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
[java] +- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
[java] +- invokers (class: org.jnp.interfaces.NamingContext)
[java] | +- 0.0.0.0 (class: org.jnp.interfaces.NamingContext)
[java] | | +- pooled (class: org.jboss.invocation.pooled.interfaces.PooledInvok

erProxy)
[java] +- UserTransaction (class: org.jboss.tm.usertx.client.ClientUserTransaction)
[java] +- UILXAConnectionFactory[link -> XAConnectionFactory] (class: javax.nami

ng.LinkRef)
[java] +- HAILXAConnectionFactory[link -> XAConnectionFactory] (class: javax.nam

ing.LinkRef)
[java] +- UIL2XAConnectionFactory[link -> XAConnectionFactory] (class: javax.nam

ing.LinkRef)
[java] +- queue (class: org.jnp.interfaces.NamingContext)
[java] | +- A (class: org.jboss.mq.SpyQueue)
[java] | +- testQueue (class: org.jboss.mq.SpyQueue)
[java] | +- ex (class: org.jboss.mq.SpyQueue)
[java] | +- DLQ (class: org.jboss.mq.SpyQueue)
[java] | +- D (class: org.jboss.mq.SpyQueue)
[java] | +- C (class: org.jboss.mq.SpyQueue)
[java] | +- B (class: org.jboss.mq.SpyQueue)
[java] +- topic (class: org.jnp.interfaces.NamingContext)
[java] | +- testDurableTopic (class: org.jboss.mq.SpyTopic)
[java] | +- testTopic (class: org.jboss.mq.SpyTopic)
[java] | +- securedTopic (class: org.jboss.mq.SpyTopic)
[java] +- console (class: org.jnp.interfaces.NamingContext)
[java] | +- PluginManager (proxy: $Proxy27 implements interface org.jboss.console

.manager.PluginManagerMBean)
[java] +- UIL2ConnectionFactory[link -> ConnectionFactory] (class: javax.naming.

LinkRef)
[java] +- UILConnectionFactory[link -> ConnectionFactory] (class: javax.naming.L

inkRef)
[java] +- UUIDKeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.uuid.U

UIDKeyGeneratorFactory)
[java] </pre>

2.3.3. Command Line Access to JMX

JBoss provides a simple command line tool that allows for interaction with a remote JMX server instance. This
tool is called twiddle (for twiddling bits via JMX) and is located in the bin directory of the distribution.
Twiddle is a command execution tool, not a general command shell. It is run using either the twiddle.sh or
twiddle.bat scripts, and passing in a -h(--help) argument provides the basic syntax, and --help-commands

shows what you can do with the tool:

[nr@toki bin]$./twiddle.sh -h
A JMX client to 'twiddle' with a remote JBoss server.

usage: twiddle.sh [options] <command> [command_arguments]

options:
-h, --help Show this help message
--help-commands Show a list of commands
-H=<command> Show command specific help
-c=command.properties Specify the command.properties file to use
-D<name>[=<value>] Set a system property

The JBoss JMX Microkernel

59

-- Stop processing options
-s, --server=<url> The JNDI URL of the remote server
-a, --adapter=<name> The JNDI name of the RMI adapter to use
[nr@toki bin]$./twiddle.sh --help-commands
twiddle.sh commands:
get Get the values of one or more MBean attributes
invoke Invoke an operation on an MBean
unregister Unregister one or more MBeans
create Create an MBean
serverinfo Get information about the MBean server
query Query the server for a list of matching MBeans
info Get the metadata for an MBean

2.3.3.1. Connecting twiddle to a Remote Server

By default the twiddle command will connect to the localhost at port 1099 to lookup the default jmx/

rmi/RMIAdaptor binding of the RMIAdaptor service as the connector for communicating with the JMX server.
To connect to a different server/port combination you can use the -s (--server) option:

[nr@rubik bin]$./twiddle.sh -s toki serverinfo -d jboss
[nr@rubik bin]$./twiddle.sh -s toki:1099 serverinfo -d jboss

To connect using a different RMIAdaptor binding use the -a (--adapter) option:

[nr@rubik bin]$./twiddle.sh -s toki -a jmx/rmi/RMIAdaptor serverinfo -d jboss
[nr@rubik bin]$./twiddle.sh -s toki --adapter=jmx/rmi/RMIAdaptor serverinfo -d jboss

2.3.3.2. Sample twiddle Command Usage

To access basic information about a server, use the serverinfo command. This currently supports:

[nr@toki bin]$./twiddle.sh -H serverinfo
Get information about the MBean server

usage: serverinfo [options]

options:
-d, --domain Get the default domain
-c, --count Get the MBean count
-l, --list List the MBeans
-- Stop processing options

[nr@rubik bin]$./twiddle.sh --server=toki serverinfo --count
385
[nr@rubik bin]$./twiddle.sh --server=toki serverinfo --domain
jboss

To query the server for the name of MBeans matching a pattern, use the query command. This currently sup-
ports:

[nr@rubik bin]$./twiddle.sh -H query
Query the server for a list of matching MBeans

usage: query [options] <query>
options:

-c, --count Display the matching MBean count
-- Stop processing options

Examples:
query all mbeans: query '*:*'
query all mbeans in the jboss.j2ee domain: query 'jboss.j2ee:*'

[nr@rubik bin]$./twiddle.sh -s toki query 'jboss:service=invoker,*'
jboss:readonly=true,service=invoker,target=Naming,type=http
jboss:service=invoker,type=jrmp

The JBoss JMX Microkernel

60

jboss:service=invoker,type=httpHA
jboss:service=invoker,type=local
jboss:service=invoker,socketType=SSL,type=jrmp
jboss:service=invoker,type=pooled
jboss:service=invoker,type=http
jboss:service=invoker,target=Naming,type=http

To get the attributes of an MBean, use the get command:

[nr@toki bin]$./twiddle.sh -H get
Get the values of one or more MBean attributes

usage: get [options] <name> [<attr>+]
If no attribute names are given all readable attributes are retrieved

options:
--noprefix Do not display attribute name prefixes
-- Stop processing options

[orb@toki bin]$./twiddle.sh get jboss:service=invoker,type=jrmp RMIObjectPort StateString
RMIObjectPort=4444
StateString=Started
[nr@toki bin]$./twiddle.sh get jboss:service=invoker,type=jrmp
ServerAddress=0.0.0.0
StateString=Started
State=3
EnableClassCaching=false
SecurityDomain=null
RMIServerSocketFactory=null
Backlog=200
RMIObjectPort=4444
Name=JRMPInvoker
RMIClientSocketFactory=null

To query the MBeanInfo for an MBean, use the info command:

[nr@toki bin]$./twiddle.sh -H info
Get the metadata for an MBean

usage: info <mbean-name>
Use '*' to query for all attributes

[nr@toki bin]$./twiddle.sh info jboss:service=invoker,type=jrmp
Description: Management Bean.
+++ Attributes:
Name: ServerAddress
Type: java.lang.String
Access: rw
Name: StateString
Type: java.lang.String
Access: r-
Name: State
Type: int
Access: r-
Name: EnableClassCaching
Type: boolean
Access: rw
Name: SecurityDomain
Type: java.lang.String
Access: rw
Name: RMIServerSocketFactory
Type: java.lang.String
Access: rw
Name: Backlog
Type: int
Access: rw
Name: RMIObjectPort
Type: int
Access: rw
Name: Name
Type: java.lang.String
Access: r-

The JBoss JMX Microkernel

61

Name: RMIClientSocketFactory
Type: java.lang.String
Access: rw

+++ Operations:
void start()
void jbossInternalLifecycle(java.lang.String java.lang.String)
void destroy()
void create()
void stop()

To invoke an operation on an MBean, use the invoker command:

[nr@toki bin]$./twiddle.sh -H invoke
Invoke an operation on an MBean

usage: invoke [options] <query> <operation> (<arg>)*

options:
-q, --query-type[=<type>] Treat object name as a query
-- Stop processing options

query type:
f[irst] Only invoke on the first matching name [default]
a[ll] Invoke on all matching names

[nr@toki bin]$
<h1>java: Namespace</h1>
<pre>

+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- DefaultDS (class: org.jboss.resource.adapter.jdbc.WrapperDataSource)
+- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFactory)
+- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
+- comp (class: javax.naming.Context)
+- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- jaas (class: javax.naming.Context)
| +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
| +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
| +- HsqlDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)
+- timedCacheFactory (class: javax.naming.Context)

Failed to lookup: timedCacheFactory, errmsg=null
+- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPropagationCont

extFactory)
+- Mail (class: javax.mail.Session)
+- StdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
+- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPropagationCont

extImporter)
+- TransactionManager (class: org.jboss.tm.TxManager)

</pre>
<h1>Global JNDI Namespace</h1>
<pre>

+- HAILConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)
+- jmx (class: org.jnp.interfaces.NamingContext)
| +- invoker (class: org.jnp.interfaces.NamingContext)
| | +- RMIAdaptor (proxy: $Proxy26 implements interface org.jboss.jmx.adaptor.rmi.RM

IAdaptor,interface org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)
| +- rmi (class: org.jnp.interfaces.NamingContext)
| | +- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class: javax.naming.LinkRef)
+- HTTPXAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- UserTransactionSessionFactory (proxy: $Proxy13 implements interface org.jboss.tm.user

tx.interfaces.UserTransactionSessionFactory)
+- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- invokers (class: org.jnp.interfaces.NamingContext)
| +- 0.0.0.0 (class: org.jnp.interfaces.NamingContext)
| | +- pooled (class: org.jboss.invocation.pooled.interfaces.PooledInvokerProxy)
+- UserTransaction (class: org.jboss.tm.usertx.client.ClientUserTransaction)
+- UILXAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef)
+- HAILXAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef)
+- UIL2XAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef)

The JBoss JMX Microkernel

62

+- queue (class: org.jnp.interfaces.NamingContext)
| +- A (class: org.jboss.mq.SpyQueue)
| +- testQueue (class: org.jboss.mq.SpyQueue)
| +- ex (class: org.jboss.mq.SpyQueue)
| +- DLQ (class: org.jboss.mq.SpyQueue)
| +- D (class: org.jboss.mq.SpyQueue)
| +- C (class: org.jboss.mq.SpyQueue)
| +- B (class: org.jboss.mq.SpyQueue)
+- topic (class: org.jnp.interfaces.NamingContext)
| +- testDurableTopic (class: org.jboss.mq.SpyTopic)
| +- testTopic (class: org.jboss.mq.SpyTopic)
| +- securedTopic (class: org.jboss.mq.SpyTopic)
+- console (class: org.jnp.interfaces.NamingContext)
| +- PluginManager (proxy: $Proxy27 implements interface org.jboss.console.manager.Plu

ginManagerMBean)
+- UIL2ConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)
+- UILConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)
+- UUIDKeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.uuid.UUIDKeyGenera

torFactory)
</pre>

2.3.4. Connecting to JMX Using Any Protocol

With the detached invokers and a somewhat generalized proxy factory capability, you can really talk to the
JMX server using the InvokerAdaptorService and a proxy factory service to expose an RMIAdaptor or similar
interface over your protocol of choice. We will introduce the detached invoker notion along with proxy factor-
ies in Section 2.7. See Section 2.7.1 for an example of an invoker service that allows one to access the MBean
server using to the RMIAdaptor interface over any protocol for which a proxy factory service exists.

2.4. Using JMX as a Microkernel

When JBoss starts up, one of the first steps performed is to create an MBean server instance
(javax.management.MBeanServer). The JMX MBean server in the JBoss architecture plays the role of a mi-
crokernel. All other manageable MBean components are plugged into JBoss by registering with the MBean
server. The kernel in that sense is only an framework, and not a source of actual functionality. The functionality
is provided by MBeans, and in fact all major JBoss components are manageable MBeans interconnected
through the MBean server.

2.4.1. The Startup Process

In this section we will describe the JBoss server startup process. A summary of the steps that occur during the
JBoss server startup sequence is:

1. The run start script initiates the boot sequence using the org.jboss.Main.main(String[]) method entry
point.

2. The Main.main method creates a thread group named jboss and then starts a thread belonging to this
thread group. This thread invokes the Main.boot method.

3. The Main.boot method processes the Main.main arguments and then creates an
org.jboss.system.server.ServerLoader using the system properties along with any additional proper-
ties specified as arguments.

4. The XML parser libraries, jboss-jmx.jar, concurrent.jar and extra libraries and classpaths given as ar-
guments are registered with the ServerLoader .

The JBoss JMX Microkernel

63

5. The JBoss server instance is created using the ServerLoader.load(ClassLoader) method with the current
thread context class loader passed in as the ClassLoader argument. The returned server instance is an im-
plementation of the org.jboss.system.server.Server interface. The creation of the server instance en-
tails:

• Creating a java.net.URLClassLoader with the URLs of the jars and directories registered with the
ServerLoader . This URLClassLoader uses the ClassLoader passed in as its parent and it is pushed as
the thread context class loader.

• The class name of the implementation of the Server interface to use is determined by the
jboss.server.type property. This defaults to org.jboss.system.server.ServerImpl.

• The Server implementation class is loaded using the URLClassLoader created in step 6 and instanti-
ated using its no-arg constructor. The thread context class loader present on entry into the ServerLoad-

er.load method is restored and the server instance is returned.

6. The server instance is initialized with the properties passed to the ServerLoader constructor using the
Server.init(Properties) method.

7. The server instance is then started using the Server.start() method. The default implementation per-
forms the following steps:

• Set the thread context class loader to the class loader used to load the ServerImpl class.

• Create an MBeanServer under the jboss domain using the MBeanServerFact-

ory.createMBeanServer(String) method.

• Register the ServerImpl and ServerConfigImpl MBeans with the MBean server.

• Initialize the unified class loader repository to contain all JARs in the optional patch directory as well
as the server configuration file conf directory, for example, server/default/conf. For each JAR and
directory an org.jboss.mx.loading.UnifiedClassLoader is created and registered with the unified
repository. One of these UnifiedClassLoader is then set as the thread context class loader. This effect-
ively makes all UnifiedClassLoaders available through the thread context class loader.

• The org.jboss.system.ServiceController MBean is created. The ServiceController manages the
JBoss MBean services life cycle. We will discuss the JBoss MBean services notion in detail in Sec-
tion 2.4.2.

• The org.jboss.deployment.MainDeployer is created and started. The MainDeployer manages de-
ployment dependencies and directing deployments to the correct deployer.

• The org.jboss.deployment.JARDeployer is created and started. The JARDeployer handles the de-
ployment of JARs that are simple library JARs.

• The org.jboss.deployment.SARDeployer is created and started. The SARDeployer handles the deploy-
ment of JBoss MBean services.

• The MainDeployer is invoked to deploy the services defined in the conf/jboss-service.xml of the cur-
rent server file set.

• Restore the thread context class loader.

The JBoss server starts out as nothing more than a container for the JMX MBean server, and then loads its per-

The JBoss JMX Microkernel

64

sonality based on the services defined in the jboss-service.xml MBean configuration file from the named
configuration set passed to the server on the command line. Because MBeans define the functionality of a
JBoss server instance, it is important to understand how the core JBoss MBeans are written, and how you
should integrate your existing services into JBoss using MBeans. This is the topic of the next section.

2.4.2. JBoss MBean Services

As we have seen, JBoss relies on JMX to load in the MBean services that make up a given server instance's per-
sonality. All of the bundled functionality provided with the standard JBoss distribution is based on MBeans.
The best way to add services to the JBoss server is to write your own JMX MBeans.

There are two classes of MBeans: those that are independent of JBoss services, and those that are dependent on
JBoss services. MBeans that are independent of JBoss services are the trivial case. They can be written per the
JMX specification and added to a JBoss server by adding an mbean tag to the deploy/user-service.xml file.
Writing an MBean that relies on a JBoss service such as naming requires you to follow the JBoss service pat-
tern. The JBoss MBean service pattern consists of a set of life cycle operations that provide state change noti-
fications. The notifications inform an MBean service when it can create, start, stop, and destroy itself. The man-
agement of the MBean service life cycle is the responsibility of three JBoss MBeans: SARDeployer, Service-
Configurator and ServiceController.

2.4.2.1. The SARDeployer MBean

JBoss manages the deployment of its MBean services via a custom MBean that loads an XML variation of the
standard JMX MLet configuration file. This custom MBean is implemented in the
org.jboss.deployment.SARDeployer class. The SARDeployer MBean is loaded when JBoss starts up as part of
the bootstrap process. The SAR acronym stands for service archive.

The SARDeployer handles services archives. A service archive can be either a jar that ends with a .sar suffix
and contains a META-INF/jboss-service.xml descriptor, or a standalone XML descriptor with a naming pat-
tern that matches *-service.xml. The DTD for the service descriptor is given in Figure 2.16.

The JBoss JMX Microkernel

65

Figure 2.16. The DTD for the MBean service descriptor parsed by the SARDeployer

The elements of the DTD are:

• server/loader-repository: This element specifies the name of the UnifiedLoaderRepository MBean to
use for the SAR to provide SAR level scoping of classes deployed in the sar. It is a unique JMX Object-

Name string. It may also specify an arbitrary configuration by including a loader-repository-config ele-
ment. The optional loaderRepositoryClass attribute specifies the fully qualified name of the loader repos-
itory implementation class. It defaults to org.jboss.mx.loading.HeirachicalLoaderRepository3.

• server/loader-repository/loader-repository-config: This optional element specifies an arbitrary configur-
ation that may be used to configure the loadRepositoryClass. The optional configParserClass attribute
gives the fully qualified name of the
org.jboss.mx.loading.LoaderRepositoryFactory.LoaderRepositoryConfigParser implementation to
use to parse the loader-repository-config content.

• server/local-directory: This element specifies a path within the deployment archive that should be copied
to the server/<config>/db directory for use by the MBean. The path attribute is the name of an entry with-
in the deployment archive.

• server/classpath: This element specifies one or more external JARs that should be deployed with the
MBean(s). The optional archives attribute specifies a comma separated list of the JAR names to load, or the
* wild card to signify that all jars should be loaded. The wild card only works with file URLs, and http
URLs if the web server supports the WEBDAV protocol. The codebase attribute specifies the URL from
which the JARs specified in the archive attribute should be loaded. If the codebase is a path rather than a
URL string, the full URL is built by treating the codebase value as a path relative to the JBoss distribution

The JBoss JMX Microkernel

66

server/<config> directory. The order of JARs specified in the archives as well as the ordering across mul-
tiple classpath element is used as the classpath ordering of the JARs. Therefore, if you have patches or in-
consistent versions of classes that require a certain ordering, use this feature to ensure the correct ordering.
Both the codebase and archives attributes values may reference a system property using a pattern ${x} to
refer to replacement of the x system property.

• server/mbean: This element specifies an MBean service. The required code attribute gives the fully quali-
fied name of the MBean implementation class. The required name attribute gives the JMX ObjectName of
the MBean. The optional xmbean-dd attribute specifies the path to the XMBean resource if this MBean ser-
vice uses the JBoss XMBean descriptor to define a Model MBean management interface.

• server/mbean/attribute: Each attribute element specifies a name/value pair of the attribute of the MBean.
The name of the attribute is given by the name attribute, and the attribute element body gives the value. The
body may be a text representation of the value, or an arbitrary element and child elements if the type of the
MBean attribute is org.w3c.dom.Element. For text values, the text is converted to the attribute type using
the JavaBean java.beans.PropertyEditor mechanism.

The text value of an attribute may reference a system property x by using the pattern ${x}. In this case the
value of the attribute will be the result of System.getProperty("x"), or null if no such property exists.

• server/mbean/depends and server/mbean/depends-list: these elements specify a dependency from the
MBean using the element to the MBean(s) named by the depends or depends-list elements. Sec-
tion 2.4.2.4. Note that the dependency value can be another mbean element which defines a nested mbean.

When the SARDeployer is asked to deploy a service performs several steps. Figure 2.17 is a sequence diagram
that shows the init through start phases of a service.

The JBoss JMX Microkernel

67

Figure 2.17. A sequence diagram highlighting the main activities performed by the SARDeployer to start
a JBoss MBean service

In Figure 2.17 the following is illustrated:

• Methods prefixed with 1.1 correspond to the load and parse of the XML service descriptor.

• Methods prefixed with 1.2 correspond to processing each classpath element in the service descriptor to cre-
ate an independent deployment that makes the jar or directory available through a UnifiedClassLoader re-
gistered with the unified loader repository.

• Methods prefixed with 1.3 correspond to processing each local-directory element in the service
descriptor. This does a copy of the SAR elements specified in the path attribute to the server/<config>/db

directory.

• Method 1.4. Process each deployable unit nested in the service a child deployment is created and added to
the service deployment info subdeployment list.

• Method 2.1. The UnifiedClassLoader of the SAR deployment unit is registered with the MBean Server so
that is can be used for loading of the SAR MBeans.

The JBoss JMX Microkernel

68

• Method 2.2. For each MBean element in the descriptor, create an instance and initialize its attributes with
the values given in the service descriptor. This is done by calling the ServiceController.install method.

• Method 2.4.1. For each MBean instance created, obtain its JMX ObjectName and ask the ServiceController
to handle the create step of the service life cycle. The ServiceController handles the dependencies of the
MBean service. Only if the service's dependencies are satisfied is the service create method invoked.

• Methods prefixed with 3.1 correspond to the start of each MBean service defined in the service descriptor.
For each MBean instance created, obtain its JMX ObjectName and ask the ServiceController to handle
the start step of the service life cycle. The ServiceController handles the dependencies of the MBean ser-
vice. Only if the service's dependencies are satisfied is the service start method invoked.

2.4.2.2. The Service Life Cycle Interface

The JMX specification does not define any type of life cycle or dependency management for MBeans. The
JBoss ServiceController MBean introduces this notion. A JBoss MBean is an extension of the JMX MBean in
that an MBean is expected to decouple creation from the life cycle of its service duties. This is necessary to im-
plement any type of dependency management. For example, if you are writing an MBean that needs a JNDI
naming service to be able to function, your MBean needs to be told when its dependencies are satisfied. This
ranges from difficult to impossible to do if the only life cycle event is the MBean constructor. Therefore, JBoss
introduces a service life cycle interface that describes the events a service can use to manage its behavior. The
following listing shows the org.jboss.system.Service interface:

package org.jboss.system;
public interface Service
{

public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

The ServiceController MBean invokes the methods of the Service interface at the appropriate times of the
service life cycle. We'll discuss the methods in more detail in the ServiceController section.

Note that there is a J2EE management specification request (JSR 77, http://jcp.org/jsr/detail/77.jsp) that intro-
duces a state management notion that includes a start/stop lifecycle notion. When this standard is finalized
JBoss will likely support an extension of the JSR 77 based service lifecycle implementation. As of the 3.2.0 re-
lease we do support JSR77 management objects and most of the statistics, but the lifecycle operations are not
supported.

2.4.2.3. The ServiceController MBean

JBoss manages dependencies between MBeans via the org.jboss.system.ServiceController custom
MBean. The SARDeployer delegates to the ServiceController when initializing, creating, starting, stopping and
destroying MBean services. Figure 2.18 shows a sequence diagram that highlights interaction between the
SARDeployer and ServiceController.

The JBoss JMX Microkernel

69

http://jcp.org/jsr/detail/77.jsp

Figure 2.18. The interaction between the SARDeployer and ServiceController to start a service

The ServiceController MBean has four key methods for the management of the service life cycle: create,
start, stop and destroy.

2.4.2.3.1. The create(ObjectName) method

The create(ObjectName) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDeployer, a notification of a new class, or another ser-
vice reaching its created state.

When a service's create method is called, all services on which the service depends have also had their create
method invoked. This gives an MBean an opportunity to check that required MBeans or resources exist. A ser-
vice cannot utilize other MBean services at this point, as most JBoss MBean services do not become fully func-
tional until they have been started via their start method. Because of this, service implementations often do
not implement create in favor of just the start method because that is the first point at which the service can
be fully functional.

2.4.2.3.2. The start(ObjectName) method

The start(ObjectName) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDeployer, a notification of a new class, or another ser-
vice reaching its started state.

The JBoss JMX Microkernel

70

When a service's start method is called, all services on which the service depends have also had their start
method invoked. Receipt of a start method invocation signals a service to become fully operational since all
services upon which the service depends have been created and started.

2.4.2.3.3. The stop(ObjectName) method

The stop(ObjectName) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDeployer, notification of a class removal, or a service on
which other services depend reaching its stopped state.

2.4.2.3.4. The destroy(ObjectName) method

The destroy(ObjectName) method is called whenever an event occurs that affects the named services state.
This could be triggered by an explicit invocation by the SARDeployer, notification of a class removal, or a ser-
vice on which other services depend reaching its destroyed state.

Service implementations often do not implement destroy in favor of simply implementing the stop method, or
neither stop nor destroy if the service has no state or resources that need cleanup.

2.4.2.4. Specifying Service Dependencies

To specify that an MBean service depends on other MBean services you need to declare the dependencies in
the mbean element of the service descriptor. This is done using the depends and depends-list elements. One
difference between the two elements relates to the optional-attribute-name attribute usage. If you track the
ObjectNames of dependencies using single valued attributes you should use the depends element. If you track
the ObjectNames of dependencies using java.util.List compatible attributes you would use the depends-

list element. If you only want to specify a dependency and don't care to have the associated service Object-

Name bound to an attribute of your MBean then use whatever element is easiest. The following listing shows ex-
ample service descriptor fragments that illustrate the usage of the dependency related elements.

<mbean code="org.jboss.mq.server.jmx.Topic"
name="jms.topic:service=Topic,name=testTopic">

<!-- Declare a dependency on the "jboss.mq:service=DestinationManager" and
bind this name to the DestinationManager attribute -->

<depends optional-attribute-name="DestinationManager">
jboss.mq:service=DestinationManager

</depends>

<!-- Declare a dependency on the "jboss.mq:service=SecurityManager" and
bind this name to the SecurityManager attribute -->

<depends optional-attribute-name="SecurityManager">
jboss.mq:service=SecurityManager

</depends>

<!-- ... -->

<!-- Declare a dependency on the
"jboss.mq:service=CacheManager" without
any binding of the name to an attribute-->

<depends>jboss.mq:service=CacheManager</depends>
</mbean>

<mbean code="org.jboss.mq.server.jmx.TopicMgr"
name="jboss.mq.destination:service=TopicMgr">

<!-- Declare a dependency on the given topic destination mbeans and
bind these names to the Topics attribute -->

<depends-list optional-attribute-name="Topics">
<depends-list-element>jms.topic:service=Topic,name=A</depends-list-element>
<depends-list-element>jms.topic:service=Topic,name=B</depends-list-element>
<depends-list-element>jms.topic:service=Topic,name=C</depends-list-element>

</depends-list>

The JBoss JMX Microkernel

71

</mbean>

Another difference between the depends and depends-list elements is that the value of the depends element
may be a complete MBean service configuration rather than just the ObjectName of the service. Example 2.15
shows an example from the hsqldb-service.xml descriptor. In this listing the
org.jboss.resource.connectionmanager.RARDeployment service configuration is defined using a nested
mbean element as the depends element value. This indicates that the
org.jboss.resource.connectionmanager.LocalTxConnectionManager MBean depends on this service. The
jboss.jca:service=LocalTxDS,name=hsqldbDS ObjectName will be bound to the ManagedConnectionFact-

oryName attribute of the LocalTxConnectionManager class.

Example 2.15. An example of using the depends element to specify the complete configuration of a
depended on service.

<mbean code="org.jboss.resource.connectionmanager.LocalTxConnectionManager"
name="jboss.jca:service=LocalTxCM,name=hsqldbDS">

<depends optional-attribute-name="ManagedConnectionFactoryName">
<!--embedded mbean-->
<mbean code="org.jboss.resource.connectionmanager.RARDeployment"

name="jboss.jca:service=LocalTxDS,name=hsqldbDS">
<attribute name="JndiName">DefaultDS</attribute>
<attribute name="ManagedConnectionFactoryProperties">

<properties>
<config-property name="ConnectionURL"

type="java.lang.String">
jdbc:hsqldb:hsql://localhost:1476

</config-property>
<config-property name="DriverClass" type="java.lang.String">

org.hsqldb.jdbcDriver
</config-property>
<config-property name="UserName" type="java.lang.String">

sa
</config-property>
<config-property name="Password" type="java.lang.String"/>

</properties>
</attribute>
<!-- ... -->

</mbean>
</depends>
<!-- ... -->

</mbean>

2.4.2.5. Identitifying Unsatisfied Dependencies

The ServiceController MBean supports two operations that help with debugging what MBeans are not run-
ning due to unsatisfied dependencies. The first operation is listIncompletelyDeployed. This returns a
java.util.List of org.jboss.system.ServiceContext objects for the MBean services that are not in the
RUNNING state.

The second operation is listWaitingMBeans . This operation returns a java.util.List of the JMX
ObjectNames of MBean services that cannot be deployed because the class specified by the code attribute is not
available.

2.4.2.6. Hot Deployment of Components, the URLDeploymentScanner

The URLDeploymentScanner MBean service provides the JBoss hot deployment capability. This service
watches one or more URLs for deployable archives and deploys the archives as they appear or change. It also

The JBoss JMX Microkernel

72

undeploys previously deployed applications if the archive from which the application was deployed is removed.
The configurable attributes include:

• URLs: A comma separated list of URL strings for the locations that should be watched for changes. Strings
that do not correspond to valid URLs are treated as file paths. Relative file paths are resolved against the
server home URL, for example, JBOSS_DIST/server/default for the default config file set. If a URL rep-
resents a file then the file is deployed and watched for subsequent updates or removal. If a URL ends in / to
represent a directory, then the contents of the directory are treated as a collection of deployables and
scanned for content that are to be watched for updates or removal. The requirement that a URL end in a / to
identify a directory follows the RFC2518 convention and allows discrimination between collections and
directories that are simply unpacked archives.

The default value for the URLs attribute is deploy/ which means that any SARs, EARs, JARs, WARs,
RARs, etc. dropped into the server/<name>/deploy directory will be automatically deployed and watched
for updates.

Example URLs include:

• "deploy/" scans ${jboss.server.url}/deploy/, which is local or remote depending on the URL used to
boot the server

• "${jboss.server.home.dir}/deploy/"scans ${jboss.server.home.dir)/deploy, which is always local

• "file:/var/opt/myapp.ear"deploy myapp.ear from a local location

• "file:/var/opt/apps/"scans the specified directory

• "http://www.test.com/netboot/myapp.ear" deploys myapp.ear from a remote location

• "http://www.test.com/netboot/apps/" scans the specified remote location using WebDAV. This will only
work if the remote http server supports the WebDAV PROPFIND command.

• ScanPeriod: The time in milliseconds between runs of the scanner thread. The default is 5000 (5 seconds).

• URLComparator: The class name of a java.util.Comparator implementation used to specify a deployment
ordering for deployments found in a scanned directory. The implementation must be able to compare two
java.net.URL objects passed to its compare method. The default setting is the
org.jboss.deployment.DeploymentSorter class which orders based on the deployment URL suffix. The or-
dering of suffixes is: "sar", "service.xml", "rar", "jar", "war", "wsr", "ear", "zip".

An an alternate implementation is the org.jboss.deployment.scanner.PrefixDeploymentSorter class. This or-
ders the URLs based on numeric prefixes. The prefix digits are converted to an int (ignoring leading zer-
oes), smaller prefixes are ordered ahead of larger numbers. Deployments that do not start with any digits
will be deployed after all numbered deployments. Deployments with the same prefix value are further sor-
ted by the DeploymentSorter logic.

• Filter: The class name of a java.io.FileFilter implementation that is used to filter the contents of scanned
directories. Any file not accepted by this filter will not be deployed. The default is
org.jboss.deployment.scanner.DeploymentFilter which is an implementation that rejects the following pat-
terns:

"#*", "%*", ",*", ".*", "_$*", "*#", "*$", "*%", "*.BAK", "*.old", "*.orig", "*.rej", "*.bak", "*,v", "*~",
".make.state", ".nse_depinfo", "CVS", "CVS.admin", "RCS", "RCSLOG", "SCCS", "TAGS", "core", "tags"

• RecursiveSearch: This property indicates whether or not deploy subdirectories are seen to be holding de-

The JBoss JMX Microkernel

73

ployable content. If this is false, deploy subdirectories that do not contain `.' in their name are seen to be un-
packaged jars with nested subdeployments. If true, then deploy subdirectories are just groupings of deploy-
able content. The difference between the two views shows is related to the depth first deployment model
JBoss supports. The false setting which treats directories as unpackaged jars with nested content triggers the
deployment of the nested content as soon as the jar directory is deployed. The true setting simply ignores
the directory and adds its content to the list of deployables and calculates the order based on the previous
filter logic. The default is true. However, note that the jboss-3.2.1 release shipped with a default configura-
tion with this set to false.

• Deployer: The JMX ObjectName string of the MBean that implements the org.jboss.deployment.Deployer
interface operations. The default setting is to use the MainDeployer created by the bootstrap startup process.

2.4.3. Writing JBoss MBean Services

Writing a custom MBean service that integrates into the JBoss server requires the use of the
org.jboss.system.Service interface pattern if the custom service is dependent on other services. When a custom
MBean depends on other MBean services you cannot perform any service dependent initialization in any of the
javax.management.MBeanRegistration interface methods since JMX has no dependency notion. Instead, you
must manage dependency state using the Service interface create and/or start methods. You can do this using
any one of the following approaches:

• Add any of the Service methods that you want called on your MBean to your MBean interface. This allows
your MBean implementation to avoid dependencies on JBoss specific interfaces.

• Have your MBean interface extend the org.jboss.system.Service interface.

• Have your MBean interface extend the org.jboss.system.ServiceMBean interface. This is a subinterface of
org.jboss.system.Service that adds String getName(), int getState(), and String getStateString() methods.

Which approach you choose depends on if you want to be associated with JBoss specific code. If you don't,
then you would use the first approach. If you don't care about dependencies on JBoss classes, the simplest ap-
proach is to have your MBean interface extend from org.jboss.system.ServiceMBean and your MBean imple-
mentation class extend from the abstract org.jboss.system.ServiceMBeanSupport class. This class implements
the org.jboss.system.ServiceMBean interface. ServiceMBeanSupport provides implementations of the create,
start, stop, and destroy methods that integrate logging and JBoss service state management tracking. Each
method delegates any subclass specific work to createService, startService, stopService, and destroyService
methods respectively. When subclassing ServiceMBeanSupport, you would override one or more of the cre-
ateService, startService, stopService, and destroyService methods as required

2.4.3.1. A Standard MBean Example

This section develops a simple MBean that binds a HashMap into the JBoss JNDI namespace at a location de-
termined by its JndiName attribute to demonstrate what is required to create a custom MBean. Because the
MBean uses JNDI, it depends on the JBoss naming service MBean and must use the JBoss MBean service pat-
tern to be notified when the naming service is available.

The MBean you develop is called JNDIMap. Version one of the JNDIMapMBean interface and JNDIMap im-
plementation class, which is based on the service interface method pattern, is given in Example 2.16. This ver-
sion of the interface makes use of the first approach in that it incorporates the Service interface methods needed
to start up correctly, but does not do so by using a JBoss-specific interface. The interface includes the Ser-
vice.start method, which will be informed when all required services have been started, and the stop method,
which will clean up the service.

The JBoss JMX Microkernel

74

Example 2.16. JNDIMapMBean interface and implementation based on the service interface method
pattern

package org.jboss.chap2.ex1;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;
public void start() throws Exception;
public void stop() throws Exception;

}

package org.jboss.chap2.ex1;

// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap implements JNDIMapMBean
{

private String jndiName;
private HashMap contextMap = new HashMap();
private boolean started;

public String getJndiName()
{

return jndiName;
}
public void setJndiName(String jndiName) throws NamingException
{

String oldName = this.jndiName;
this.jndiName = jndiName;
if (started) {

unbind(oldName);
try {

rebind();
} catch(Exception e) {

NamingException ne = new NamingException("Failedto update jndiName");
ne.setRootCause(e);
throw ne;

}
}

}

public void start() throws Exception
{

started = true;
rebind();

}

public void stop()
{

started = false;
unbind(jndiName);

}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
System.out.println("fullName="+fullName);

The JBoss JMX Microkernel

75

NonSerializableFactory.rebind(fullName, contextMap, true);
}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
e.printStackTrace();

}
}

}

package org.jboss.chap2.ex1;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;
public void start() throws Exception;
public void stop() throws Exception;

}

package org.jboss.chap2.ex1;
// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap implements JNDIMapMBean
{

private String jndiName;
private HashMap contextMap = new HashMap();
private boolean started;

public String getJndiName()
{

return jndiName;
}

public void setJndiName(String jndiName) throws NamingException
{

String oldName = this.jndiName;
this.jndiName = jndiName;
if (started) {

unbind(oldName);
try {

rebind();
} catch(Exception e) {

NamingException ne = new NamingException("Failed to update jndiName");
ne.setRootCause(e);
throw ne;

}
}

}

public void start() throws Exception
{

started = true;
rebind();

}

The JBoss JMX Microkernel

76

public void stop()
{

started = false;
unbind(jndiName);

}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
System.out.println("fullName="+fullName);
NonSerializableFactory.rebind(fullName, contextMap, true);

}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
e.printStackTrace();

}
}

}

Version two of the JNDIMapMBean interface and JNDIMap implementation class, which is based on the Ser-
viceMBean interface and ServiceMBeanSupport class, is given in Example 2.16. In this version, the imple-
mentation class extends the ServiceMBeanSupport class and overrides the startService method and the stopSer-
vice method. JNDIMapMBean also implements the abstract getName to return a descriptive name for the
MBean. The JNDIMapMBean interface extends the org.jboss.system.ServiceMBean interface and only declares
the setter and getter methods for the JndiName attribute because it inherits the Service life cycle methods from
ServiceMBean. This is the third approach mentioned at the start of the Section 2.4.2. The implementation dif-
ferences between Example 2.16 and Example 2.17 are highlighted in bold in Example 2.17.

Example 2.17. JNDIMap MBean interface and implementation based on the ServiceMBean interface and
ServiceMBeanSupport class

package org.jboss.chap2.ex2;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean extends org.jboss.system.ServiceMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;

}

package org.jboss.chap2.ex2;
// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap extends org.jboss.system.ServiceMBeanSupport
implements JNDIMapMBean

{
private String jndiName;
private HashMap contextMap = new HashMap();

public String getJndiName()

The JBoss JMX Microkernel

77

{
return jndiName;

}

public void setJndiName(String jndiName)
throws NamingException

{
String oldName = this.jndiName;
this.jndiName = jndiName;
if (super.getState() == STARTED) {

unbind(oldName);
try {

rebind();
} catch(Exception e) {

NamingException ne = new NamingException("Failed to update jndiName");
ne.setRootCause(e);
throw ne;

}
}

}

public void startService() throws Exception
{

rebind();
}

public void stopService()
{

unbind(jndiName);
}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
log.info("fullName="+fullName);
NonSerializableFactory.rebind(fullName, contextMap, true);

}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
log.error("Failed to unbind map", e);

}
}

}

The source code for these MBeans along with the service descriptors is located in the examples/

src/main/org/jboss/chap2/{ex1,ex2} directories.

The example 1 service descriptor is shown below along with a sample client usage code fragment. The
JNDIMap MBean binds a HashMap object under the inmemory/maps/MapTest JNDI name and the client code
fragment demonstrates retrieving the HashMap object from the inmemory/maps/MapTest location.

<!-- The SAR META-INF/jboss-service.xml descriptor -->
<server>

<mbean code="org.jboss.chap2.ex1.JNDIMap"
name="chap2.ex1:service=JNDIMap">

<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>
</server>

The JBoss JMX Microkernel

78

// Sample lookup code
InitialContext ctx = new InitialContext();
HashMap map = (HashMap) ctx.lookup("inmemory/maps/MapTest");

2.4.3.2. XMBean Examples

In this section we will develop a variation of the JNDIMap MBean introduced in the preceding section that ex-
poses its management metadata using the JBoss XMBean framework. Our core managed component will be ex-
actly the same core code from the JNDIMap class, but this will not implement any specific management related
interface. We will illustrate the following capabilities not possible with a Standard MBean:

• The ability to add rich descriptions to attribute and operations

• The ability to expose notification information

• The ability to add persistence of attributes

• The ability to add custom interceptors for security and remote access through a typed interface

2.4.3.2.1. Version 1, The Annotated JNDIMap XMBean

Let's start with a simple XMBean variation of the standard MBean version of the JNDIMap that adds the de-
scriptive information about the attributes and operations and their arguments. The following listing shows the
jboss-service.xml descriptor and the jndimap-xmbean1.xml XMBean descriptor. The source can be found in the
src/main/org/jboss/chap2/xmbean directory of the book examples.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE server PUBLIC

"-//JBoss//DTD MBean Service 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss-service_3_2.dtd">

<server>
<mbean code="org.jboss.chap2.xmbean.JNDIMap"

name="chap2.xmbean:service=JNDIMap"
xmbean-dd="META-INF/jndimap-xmbean.xml">

<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>
</server>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd">

<mbean>
<description>The JNDIMap XMBean Example Version 1</description>
<descriptors>

<persistence persistPolicy="Never" persistPeriod="10"
persistLocation="data/JNDIMap.data" persistName="JNDIMap"/>

<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>

</descriptors>
<class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName" setMethod="setJndiName">

<description>
The location in JNDI where the Map we manage will be bound

</description>
<name>JndiName</name>

The JBoss JMX Microkernel

79

<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into the

map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values. The
"[Ljava.lang.String;" type signature is the VM representation of the
java.lang.String[] type. </description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the map</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>
<parameter>

<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
<!-- Notifications -->
<notification>

<description>The notification sent whenever a value is get into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.chap2.xmbean.JNDIMap.get</notification-type>

</notification>
<notification>

<description>The notification sent whenever a value is put into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.chap2.xmbean.JNDIMap.put</notification-type>

</notification>
</mbean>

As noted previously, the 3.2.2 release replaced the binding of the RMIAdaptor interface with the invoker ad-
aptor service and this service does not yet support remoting of JMX notifications. Therefore, we need to create

The JBoss JMX Microkernel

80

a config that uses the RMIAdaptorService . There is a config target that sets up a rmi-adaptor configuration
with the jmx-rmi-adaptor.sar installed. Build this setup using:

[nr@toki]$ ant -Dchap=chap2 config
...

[echo] Preparing rmi-adaptor configuration fileset
[copy] Copying 214 files to /tmp/jboss-3.2.6/server/rmi-adaptor
[copy] Copied 2 empty directories to /tmp/jboss-3.2.6/server/rmi-adaptor
[copy] Copying 2 files to /tmp/jboss-3.2.6/server/rmi-adaptor/deploy/jmx-rmi-adaptor.s

ar
[delete] Deleting directory /tmp/jboss-3.2.6/server/rmi-adaptor/deploy/jmx-invoker-adapt

or-server.sar
[delete] Deleting directory /tmp/jboss-3.2.6/server/rmi-adaptor/deploy/management

Now, run the rmi-adaptor configuration, and then build, deploy and test the XMBean as follows:

[nr@toki examples]$ ant -Dchap=chap2 -Dex=xmbean1 -Djboss.deploy.conf=rmi-adaptor run-example
...
run-examplexmbean1:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/rmi-adaptor/deploy
[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object chap2.xmbean:service=JNDIMap,java.lang.Object cha

p2.xmbean:service=JNDIMap)
[java] + java.lang.Object get(java.lang.Object chap2.xmbean:service=JNDIMap)
[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String; chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key0, value=value0
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=3,timeStamp=10986315
27823,message=null,userData=null]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=4,timeStamp=10986315
27940,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=5,timeStamp=10986315
27985,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=6,timeStamp=10986315
27999,message=null,userData=null]

The functionality is largely the same as the Standard MBean with the notable exception of the JMX notifica-
tions. A Standard MBean has no way of declaring that it will emit notifications. An XMBean may declare the
notifications it emits using notification elements as is shown in the version 1 descriptor. We see the notifica-
tions from the get and put operations on the test client console output. Note that there is also an
jmx.attribute.change notification emitted when the InitialValues attribute was changed. This is a
standard feature of ModelMBeans owning to the fact that the ModelMBean interface extends the ModelMBeanNoti-

ficationBroadcaster which supports AttributeChangeNotificationListeners.

The other major difference between the Standard and XMBean versions of JNDIMap is the descriptive
metadata. Look at the chap2.xmbean:service=JNDIMap in the JMX Console, and you will see the attributes
section as shown in Figure 2.19.

The JBoss JMX Microkernel

81

Figure 2.19. The Version 1 JNDIMapXMBean jmx-console view

Notice that the JMX Console now displays the full attribute description as specified in the XMBean descriptor
rather than MBean Attribute text seen in standard MBean implementations. Scroll down to the operations and
you will also see that these now also have nice descriptions of their function and parameters.

2.4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

In version 2 of the XMBean we add support for persistence of the XMBean attributes. The updated XMBean
deployment descriptor is given below. The changes with respect to the version 1 descriptor of Lxxx1 are shown
in bold.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd">

<mbean>
<description>The JNDIMap XMBean Example Version 2</description>
<descriptors>

<persistence persistPolicy="OnUpdate" persistPeriod="10"
persistLocation="${jboss.server.data.dir}" persistName="JNDIMap.ser"/>

<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>
<persistence-manager value="org.jboss.mx.persistence.ObjectStreamPersistenceManager"/>

The JBoss JMX Microkernel

82

</descriptors> <class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName" setMethod="setJndiName">

<description>
The location in JNDI where the Map we manage will be bound

</description>
<name>JndiName</name>
<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into the

map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values</description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the nap</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>
<parameter>

<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
<!-- Notifications -->
<notification>

<description>The notification sent whenever a value is get into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.chap2.xmbean.JNDIMap.get</notification-type>

</notification>
<notification>

<description>The notification sent whenever a value is put into the map
managed by the service</description>

The JBoss JMX Microkernel

83

<name>javax.management.Notification</name>
<notification-type>org.jboss.chap2.xmbean.JNDIMap.put</notification-type>

</notification>
</mbean>

Build, deploy and test the version 2 XMBean as follows:

[examples]$ ant -Dchap=chap2 -Dex=xmbean2 -Djboss.deploy.conf=rmi-adaptor run-example
...
run-examplexmbean2:

[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object chap2.xmbean:service=JNDIMap,java.lang.Object cha

p2.xmbean:service=JNDIMap)
[java] + java.lang.Object get(java.lang.Object chap2.xmbean:service=JNDIMap)
[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String; chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key10, value=value10
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=7,timeStamp=10986326
93716,message=null,userData=null]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=8,timeStamp=10986326
93857,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=9,timeStamp=10986326
93896,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=10,timeStamp=1098632
693925,message=null,userData=null]

There is nothing manifestly different about this version of the XMBean at this point because we have done
nothing to test that changes to attribute value are actually persisted. Perform this test by running example xm-
bean2a serveral times:

[nr@toki examples] ant -Dchap=chap2 -Dex=xmbean2a -Djboss.deploy.conf=rmi-adaptor \
run-example
...

[java] InitialValues.length=2
[java] key=key10, value=value10

[nr@toki examples] ant -Dchap=chap2 -Dex=xmbean2a -Djboss.deploy.conf=rmi-adaptor \
run-example
...

[java] InitialValues.length=4
[java] key=key10, value=value10
[java] key=key2, value=value2

[nr@toki examples] ant -Dchap=chap2 -Dex=xmbean2a -Djboss.deploy.conf=rmi-adaptor \
run-example
...

[java] InitialValues.length=6
[java] key=key10, value=value10
[java] key=key2, value=value2
[java] key=key3, value=value3

The JBoss JMX Microkernel

84

The org.jboss.chap2.xmbean.TestXMBeanRestart used in this example obtains the current InitialValues
attribute setting, and then adds another key/value pair to it. The client code is shown below.

package org.jboss.chap2.xmbean;

import javax.management.Attribute;
import javax.management.ObjectName;
import javax.naming.InitialContext;

import org.jboss.jmx.adaptor.rmi.RMIAdaptor;

/**
* A client that demonstrates the persistence of the xmbean
* attributes. Every time it it run it looks up the InitialValues
* attribute, prints it out and then adds a new key/value to the
* list.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class TestXMBeanRestart
{

/**
* @param args the command line arguments
*/
public static void main(String[] args) throws Exception
{

InitialContext ic = new InitialContext();
RMIAdaptor server = (RMIAdaptor) ic.lookup("jmx/rmi/RMIAdaptor");

// Get the InitialValues attribute
ObjectName name = new ObjectName("chap2.xmbean:service=JNDIMap");
String[] initialValues = (String[])

server.getAttribute(name, "InitialValues");
System.out.println("InitialValues.length="+initialValues.length);
int length = initialValues.length;
for (int n = 0; n < length; n += 2) {

String key = initialValues[n];
String value = initialValues[n+1];

System.out.println("key="+key+", value="+value);
}
// Add a new key/value pair
String[] newInitialValues = new String[length+2];
System.arraycopy(initialValues, 0, newInitialValues,

0, length);
newInitialValues[length] = "key"+(length/2+1);
newInitialValues[length+1] = "value"+(length/2+1);

Attribute ivalues = new
Attribute("InitialValues", newInitialValues);

server.setAttribute(name, ivalues);
}

}

At this point you may even shutdown the JBoss server, restart it and then rerun the initial example 2 to see if
the changes are persisted across server restarts:

[examples]$ ant -Dchap=chap2 -Dex=xmbean2 -Djboss.deploy.conf=rmi-adaptor run-example
...

run-examplexmbean2:
[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object chap2.xmbean:service=JNDIMap,java.lang.Object cha

p2.xmbean:service=JNDIMap)
[java] + java.lang.Object get(java.lang.Object chap2.xmbean:service=JNDIMap)

The JBoss JMX Microkernel

85

[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String; chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key10, value=value10
[java] key=key2, value=value2
[java] key=key3, value=value3
[java] key=key4, value=value4
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=3,timeStamp=10986336
64712,message=null,userData=null]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=4,timeStamp=10986336
64821,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=5,timeStamp=10986336
64860,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=6,timeStamp=10986336
64877,message=null,userData=null]

[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=7,timeStamp=10986336
64895,message=null,userData=null]

[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=8,timeStamp=10986336
64899,message=null,userData=null]

[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=9,timeStamp=10986336
65614,message=null,userData=null]

You see that the last InitialValues attribute setting is in fact visible.

2.4.3.2.3. Version 3, Adding Security and Remote Access to the JNDIMap XM-
Bean

The last example version of the JNDIMap XMBean will demonstrate customization of the server interceptor
stack as well as exposing a subset of the XMBean management interface via a typed proxy to a remote client
using RMI/JRMP. On the server side we will add a simple security interceptor that only allows access to attrib-
utes or operations by a user specified in the interceptor configuration. We will also use another custom inter-
ceptor to implement the MBean detached invoker pattern described in Section 2.7. By implementing this pat-
tern in an invoker rather than the XMBean, we demonstrate how to introduce a remote access aspect without
having to modify the existing JNDIMap implementation.

We will use the JRMPProxyFactory service to expose the ClientInterface to remote clients.

public interface ClientInterface
{

public String[] getInitialValues();
public void setInitialValues(String[] keyValuePairs);
public Object get(Object key);
public void put(Object key, Object value);

}

Our test client will obtain the ClientInterface proxy from JNDI and interact with the XMBean through RMI
style calls instead of the RMIAdaptor and MBean Server style used previously.

package org.jboss.chap2.xmbean;

import javax.naming.InitialContext;

The JBoss JMX Microkernel

86

import org.jboss.security.SecurityAssociation;
import org.jboss.security.SimplePrincipal;

/**
* A client that accesses an XMBean through its RMI interface
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class TestXMBean3
{

/**
* @param args the command line arguments
*/
public static void main(String[] args) throws Exception
{

InitialContext ic = new InitialContext();
ClientInterface xmbean = (ClientInterface)

ic.lookup("secure-xmbean/ClientInterface");

// This call should fail because we have not set a security context
try {

String[] tmp = xmbean.getInitialValues();
throw new IllegalStateException("Was able to call getInitialValues");

} catch(Exception e) {
System.out.println("Called to getInitialValues failed as expected: "

+ e.getMessage());
}

// Set a security context using the SecurityAssociation
SecurityAssociation.setPrincipal(new SimplePrincipal("admin"));

// Get the InitialValues attribute
String[] initialValues = xmbean.getInitialValues();
for(int n = 0; n < initialValues.length; n += 2) {

String key = initialValues[n];
String value = initialValues[n+1];

System.out.println("key="+key+", value="+value);
}

// Invoke the put(Object, Object) op
xmbean.put("key1", "value1");
System.out.println("JNDIMap.put(key1,

value1) successful");
Object result0 = xmbean.get("key0");
System.out.println("JNDIMap.get(key0): "+result0);
Object result1 = xmbean.get("key1");
System.out.println("JNDIMap.get(key1): "+result1);

// Change the InitialValues
initialValues[0] += ".1";
initialValues[1] += ".2";
xmbean.setInitialValues(initialValues);

initialValues = xmbean.getInitialValues();
for(int n = 0; n < initialValues.length; n += 2) {

String key = initialValues[n];
String value = initialValues[n+1];

System.out.println("key="+key+", value="+value);
}

}
}

The deployment descriptor is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"

The JBoss JMX Microkernel

87

"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd"
[<!ATTLIST interceptor adminName CDATA #IMPLIED>]>

<mbean>
<description>The JNDIMap XMBean Example Version 3</description>
<descriptors>

<interceptors>
<interceptor code="org.jboss.chap2.xmbean.ServerSecurityInterceptor"

adminName="admin"/>
<interceptor code="org.jboss.chap2.xmbean.InvokerInterceptor"/>
<interceptor code="org.jboss.mx.interceptor.PersistenceInterceptor2"/>
<interceptor code="org.jboss.mx.interceptor.ModelMBeanInterceptor"/>
<interceptor code="org.jboss.mx.interceptor.ObjectReferenceInterceptor"/>

</interceptors>
<persistence persistPolicy="Never"/>
<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>

</descriptors>
<class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName" setMethod="setJndiName">

<description>
The location in JNDI where the Map we manage will be bound

</description>
<name>JndiName</name>
<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into the

map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values</description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the nap</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>

The JBoss JMX Microkernel

88

<parameter>
<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
</mbean>

The addition over the previous versions of the JNDIMap XMBean is the interceptors element shown in bold in
the listing. This defines the interceptor stack through which all MBean attribute access and operations pass. The
first two interceptors, org.jboss.chap2.xmbean.ServerSecurityInterceptor and
org.jboss.chap2.xmbean.InvokerInterceptor are the example custom interceptors. The remaining three in-
terceptors are the standard ModelMBean interceptors. Because we have a persistence policy of Never, we could
in fact remove the standard org.jboss.mx.interceptor.PersistenceInterceptor2. The JMX interceptors
are an ordered chain of filters. The standard base class of an interceptor is shown below.

package org.jboss.mx.interceptor;

import javax.management.MBeanInfo;
import org.jboss.mx.server.MBeanInvoker;

/**
* Base class for all interceptors.
*
* @see org.jboss.mx.interceptor.StandardMBeanInterceptor
* @see org.jboss.mx.interceptor.LogInterceptor
*
* @author Juha Lindfors.
* @version $Revision: 1.11 $
*
*/

public class AbstractInterceptor implements Interceptor
{

// Attributes --
protected Interceptor next = null;
protected String name = null;
protected MBeanInfo info;
protected MBeanInvoker invoker;

// Constructors --
public AbstractInterceptor()
{

this(null);
}
public AbstractInterceptor(String name)
{

this.name = name;
}
public AbstractInterceptor(MBeanInfo info,

MBeanInvoker invoker)
{

this.name = getClass().getName();
this.info = info;
this.invoker = invoker;

}

// Public --
public Object invoke(Invocation invocation)

throws InvocationException
{

return getNext().invoke(invocation);
}

public Interceptor getNext()
{

return next;
}

The JBoss JMX Microkernel

89

public Interceptor setNext(Interceptor interceptor)
{

this.next = interceptor;
return interceptor;

}

}

The custom interceptors for the version 3 XMBean example are the ServerSecurityInterceptor and the In-

vokerInterceptor. The ServerSecurityInterceptor intercepts invoke operations and validates that the In-

vocation context include an admin principal.

package org.jboss.chap2.xmbean;

import java.security.Principal;

import org.jboss.logging.Logger;
import org.jboss.mx.interceptor.AbstractInterceptor;
import org.jboss.mx.interceptor.Invocation;
import org.jboss.mx.interceptor.InvocationException;
import org.jboss.security.SimplePrincipal;

/**
* A simple security interceptor example that restricts access to a
* single principal
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class ServerSecurityInterceptor extends AbstractInterceptor
{

private static Logger log = Logger.getLogger(ServerSecurityInterceptor.class);
private SimplePrincipal admin = new SimplePrincipal("admin");

public String getAdminName()
{

return admin.getName();
}
public void setAdminName(String name)
{

admin = new SimplePrincipal(name);
}

public Object invoke(Invocation invocation)
throws InvocationException

{
String opName = invocation.getName();

// If this is not the invoke(Invocation) op just pass it along
if (opName.equals("invoke") == false) {

return getNext().invoke(invocation);
}

Object[] args = invocation.getArgs();
org.jboss.invocation.Invocation invokeInfo =

(org.jboss.invocation.Invocation) args[0];
Principal caller = invokeInfo.getPrincipal();
log.info("invoke, opName="+opName+", caller="+caller);

// Only the admin caller is allowed access
if (caller == null || caller.equals(admin) == false) {

throw new InvocationException(new SecurityException("Caller=" +
caller +
" is not allowed access"));

}
return getNext().invoke(invocation);

The JBoss JMX Microkernel

90

}
}

The InvokerInterceptor implements the detached invoker pattern. This is discussed in detail in Remote Access
to Services, Detached Invokers.

package org.jboss.chap2.xmbean;

import java.lang.reflect.Method;
import java.util.HashMap;
import javax.management.Descriptor;
import javax.management.MBeanInfo;

import org.jboss.logging.Logger;
import org.jboss.mx.interceptor.AbstractInterceptor;
import org.jboss.mx.interceptor.Invocation;
import org.jboss.mx.interceptor.InvocationException;
import org.jboss.mx.server.MBeanInvoker;
import org.jboss.invocation.MarshalledInvocation;

/** An interceptor that handles the
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class InvokerInterceptor
extends AbstractInterceptor

{
private static Logger log = Logger.getLogger(InvokerInterceptor.class);
private Class exposedInterface = ClientInterface.class;
private HashMap methodMap = new HashMap();
private HashMap invokeMap = new HashMap();

public InvokerInterceptor(MBeanInfo info,
MBeanInvoker invoker)

{
super(info, invoker);
try {

Descriptor[] descriptors = invoker.getDescriptors();
Object resource = invoker.getResource();
Class[] getInitialValuesSig = {};
Method getInitialValues =

exposedInterface.getDeclaredMethod("getInitialValues",
getInitialValuesSig);

Long hash = new Long(MarshalledInvocation.calculateHash(getInitialValues));
InvocationInfo invokeInfo =

new InvocationInfo("InitialValues",
Invocation.ATTRIBUTE,
Invocation.READ, getInitialValuesSig,
descriptors, resource);

methodMap.put(hash, getInitialValues);
invokeMap.put(getInitialValues, invokeInfo);
log.debug("getInitialValues hash:"+hash);

Class[] setInitialValuesSig = {String[].class};
Method setInitialValues =

exposedInterface.getDeclaredMethod("setInitialValues",
setInitialValuesSig);

hash = new Long(MarshalledInvocation.calculateHash(setInitialValues));
invokeInfo = new InvocationInfo("InitialValues",

Invocation.ATTRIBUTE,
Invocation.WRITE,
setInitialValuesSig,
descriptors, resource);

methodMap.put(hash, setInitialValues);
invokeMap.put(setInitialValues, invokeInfo);
log.debug("setInitialValues hash:"+hash);

The JBoss JMX Microkernel

91

Class[] getSig = {Object.class};
Method get = exposedInterface.getDeclaredMethod("get",

getSig);
hash = new Long(MarshalledInvocation.calculateHash(get));
invokeInfo = new InvocationInfo("get",

Invocation.OPERATION,
Invocation.READ, getSig,
descriptors, resource);

methodMap.put(hash, get);
invokeMap.put(get, invokeInfo);
log.debug("get hash:"+hash);

Class[] putSig = {Object.class, Object.class};
Method put = exposedInterface.getDeclaredMethod("put",

putSig);
hash = new Long(MarshalledInvocation.calculateHash(put));
invokeInfo = new InvocationInfo("put",

Invocation.OPERATION,
Invocation.WRITE, putSig,
descriptors, resource);

methodMap.put(hash, put);
invokeMap.put(put, invokeInfo);
log.debug("putt hash:"+hash);

} catch(Exception e) {
log.error("Failed to init InvokerInterceptor", e);

}
}

public Object invoke(Invocation invocation)
throws InvocationException

{
String opName = invocation.getName();
Object[] args = invocation.getArgs();
Object returnValue = null;
if (opName.equals("invoke") == true) {

org.jboss.invocation.Invocation invokeInfo =
(org.jboss.invocation.Invocation) args[0];

// Set the method hash to Method mapping
if (invokeInfo instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invokeInfo;
mi.setMethodMap(methodMap);

}

// Invoke the exposedInterface method via reflection if
// this is an invoke
Method method = invokeInfo.getMethod();
Object[] methodArgs = invokeInfo.getArguments();
InvocationInfo info = (InvocationInfo) invokeMap.get(method);
Invocation methodInvocation = info.getInvocation(methodArgs);
returnValue = getNext().invoke(methodInvocation);

} else {
returnValue = getNext().invoke(invocation);

}
return returnValue;

}

/**
* A class that holds the ClientInterface method info needed to build
* the JMX Invocation to pass down the interceptor stack.
*/
private class InvocationInfo
{

private int type;
private int impact;
private String name;
private String[] signature;
private Descriptor[] descriptors;
private Object resource;

InvocationInfo(String name, int type, int impact,

The JBoss JMX Microkernel

92

Class[] signature, Descriptor[] descriptors,
Object resource)

{
this.name = name;
this.type = type;
this.impact = impact;
this.descriptors = descriptors;
this.resource = resource;
this.signature = new String[signature.length];
for(int s = 0; s < signature.length; s ++) {

this.signature[s] = signature[s].getName();
}

}

Invocation getInvocation(Object[] args)
{

return new Invocation(name, type, impact, args, signature,
descriptors, resource);

}
}

}

The deployment descriptor should include the interceptor stack.

<?xml version='1.0' encoding='UTF-8' ?>
<server>

<mbean code="org.jboss.chap2.xmbean.JNDIMap"
name="chap2.xmbean:service=JNDIMap,version=3"
xmbean-dd="META-INF/jndimap-xmbean3.xml">
<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>
<!-- The JRMP invoker proxy configuration for

the naming service -->
<mbean code="org.jboss.invocation.jrmp.server.JRMPProxyFactory"

name="jboss.test:service=proxyFactory,type=jrmp,target=JNDIMap">
<!-- Use the standard JRMPInvoker from

conf/jboss-service.xxml -->
<attribute name="InvokerName">jboss:service=invoker,type=jrmp</attribute>
<attribute name="TargetName">chap2.xmbean:service=JNDIMap,version=3</attribute>
<attribute name="JndiName">secure-xmbean/ClientInterface</attribute>
<attribute name="ExportedInterface">

org.jboss.chap2.xmbean.ClientInterface
</attribute>
<attribute name="ClientInterceptors">

<iterceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</iterceptors>
</attribute>
<depends>jboss:service=invoker,type=jrmp</depends>
<depends>chap2.xmbean:service=JNDIMap,version=3</depends>

</mbean>
</server>

[nr@toki examples] ant -Dchap=chap2 -Dex=xmbean3 config
...
config:

[echo] Preparing rmi-adaptor configuration fileset
[copy] Copying 60 files to /tmp/jboss-3.2.6/server/rmi-adaptor

[delete] Deleting directory /tmp/jboss-3.2.6/server/rmi-adaptor/deploy/jmx-invoker-adap
tor-server.sar

[delete] Deleting directory /tmp/jboss-3.2.6/server/rmi-adaptor/deploy/management

[nr@toki examples]$ ant -Dchap=chap2 -Dex=xmbean3 run-example
...
run-examplexmbean3:

The JBoss JMX Microkernel

93

[java] Called to getInitialValues failed as expected: Caller=null is not allowed access
[java] key=key0, value=value0
[java] JNDIMap.put(key1, value1) successful
[java] JNDIMap.get(key0): null
[java] JNDIMap.get(key1): value1
[java] key=key0.1, value=value0.2

[nr@toki examples]$ ant -Dchap=chap2 -Dex=xmbean3 run-example
...
run-examplexmbean3:

[java] Called to getInitialValues failed as expected: Caller=null is not allowed access
[java] key=key0.1, value=value0.2
[java] JNDIMap.put(key1, value1) successful
[java] JNDIMap.get(key0): null
[java] JNDIMap.get(key1): value1
[java] key=key0.1.1, value=value0.2.2

2.4.4. Deployment Ordering and Dependencies

We have seen how to manage dependencies using the service descriptor depends and depends-list tags. The de-
ployment ordering supported by the deployment scanners provides a coarse-grained dependency management
in that there is an order to deployments. If dependencies are consistent with the deployment packages then this
is a simpler mechanism than having to enumerate the explicit MBean-MBean dependencies. By writing your
own filters you can change the coarse grained ordering performed by the deployment scanner.

When a component archive is deployed, its nested deployment units are processed in a depth first ordering.
Structuring of components into an archive hierarchy is yet another way to mange deployment ordering.

Typically you will need to explicitly state your MBean dependencies because your packaging structure does not
happen to resolve the dependencies. Let's consider an example component deployment that consists of an
MBean that uses an EJB. Here is the structure of the example EAR.

output/chap2/chap2-ex3.ear
+- META-INF/MANIFEST.MF
+- META-INF/jboss-app.xml
+- chap2-ex3.jar (archive) [EJB jar]
| +- META-INF/MANIFEST.MF
| +- META-INF/ejb-jar.xml
| +- org/jboss/chap2/ex3/EchoBean.class
| +- org/jboss/chap2/ex3/EchoLocal.class
| +- org/jboss/chap2/ex3/EchoLocalHome.class
+- chap2-ex3.sar (archive) [MBean sar]
| +- META-INF/MANIFEST.MF
| +- META-INF/jboss-service.xml
| +- org/jboss/chap2/ex3/EjbMBeanAdaptor.class
+- META-INF/application.xml

The EAR contains a chap2-ex3.jar and chap2-ex3.sar. The chap2-ex3.jar is the EJB archive and the
chap2-ex3.sar is the MBean service archive. We have implemented the service as a Dynamic MBean to
provide an illustration of their use. .

package org.jboss.chap2.ex3;

import java.lang.reflect.Method;
import javax.ejb.CreateException;
import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.AttributeNotFoundException;
import javax.management.DynamicMBean;
import javax.management.InvalidAttributeValueException;

The JBoss JMX Microkernel

94

import javax.management.JMRuntimeException;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanConstructorInfo;
import javax.management.MBeanInfo;
import javax.management.MBeanNotificationInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanException;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import javax.management.ReflectionException;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.system.ServiceMBeanSupport;

/**
* An example of a DynamicMBean that exposes select attributes and
* operations of an EJB as an MBean.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.11 $
*/

public class EjbMBeanAdaptor extends ServiceMBeanSupport
implements DynamicMBean

{
private String helloPrefix;
private String ejbJndiName;
private EchoLocalHome home;

/** These are the mbean attributes we expose
*/
private MBeanAttributeInfo[] attributes = {

new MBeanAttributeInfo("HelloPrefix", "java.lang.String",
"The prefix message to append to the session echo reply",
true, // isReadable
true, // isWritable
false), // isIs

new MBeanAttributeInfo("EjbJndiName", "java.lang.String",
"The JNDI name of the session bean local home",
true, // isReadable
true, // isWritable
false) // isIs

};

/**
* These are the mbean operations we expose
*/
private MBeanOperationInfo[] operations;

/**
* We override this method to setup our echo operation info. It
* could also be done in a ctor.
*/
public ObjectName preRegister(MBeanServer server,

ObjectName name)
throws Exception

{
log.info("preRegister notification seen");

operations = new MBeanOperationInfo[5];

Class thisClass = getClass();
Class[] parameterTypes = {String.class};
Method echoMethod =

thisClass.getMethod("echo", parameterTypes);
String desc = "The echo op invokes the session bean echo method and"

+ " returns its value prefixed with the helloPrefix attribute value";
operations[0] = new MBeanOperationInfo(desc, echoMethod);

// Add the Service interface operations from our super class
parameterTypes = new Class[0];
Method createMethod =

The JBoss JMX Microkernel

95

thisClass.getMethod("create", parameterTypes);
operations[1] = new MBeanOperationInfo("The

JBoss Service.create", createMethod);
Method startMethod =

thisClass.getMethod("start", parameterTypes);
operations[2] = new MBeanOperationInfo("The

JBoss Service.start", startMethod);
Method stopMethod =

thisClass.getMethod("stop", parameterTypes);
operations[3] = new MBeanOperationInfo("The

JBoss Service.stop", startMethod);
Method destroyMethod =

thisClass.getMethod("destroy", parameterTypes);
operations[4] = new MBeanOperationInfo("The

JBoss Service.destroy", startMethod);
return name;

}

// --- Begin ServiceMBeanSupport overides
protected void createService() throws Exception
{

log.info("Notified of create state");
}

protected void startService() throws Exception
{

log.info("Notified of start state");
InitialContext ctx = new InitialContext();
home = (EchoLocalHome) ctx.lookup(ejbJndiName);

}

protected void stopService()
{

log.info("Notified of stop state");
}

// --- End ServiceMBeanSupport overides

public String getHelloPrefix()
{

return helloPrefix;
}
public void setHelloPrefix(String helloPrefix)
{

this.helloPrefix = helloPrefix;
}

public String getEjbJndiName()
{

return ejbJndiName;
}
public void setEjbJndiName(String ejbJndiName)
{

this.ejbJndiName = ejbJndiName;
}

public String echo(String arg)
throws CreateException, NamingException

{
log.debug("Lookup EchoLocalHome@"+ejbJndiName);
EchoLocal bean = home.create();
String echo = helloPrefix + bean.echo(arg);
return echo;

}

// --- Begin DynamicMBean interface methods
/**
* Returns the management interface that describes this dynamic
* resource. It is the responsibility of the implementation to
* make sure the description is accurate.

The JBoss JMX Microkernel

96

*
* @return the management interface descriptor.
*/
public MBeanInfo getMBeanInfo()
{

String classname = getClass().getName();
String description = "This is an MBean that uses a session bean in the"

+ " implementation of its echo operation.";
MBeanConstructorInfo[] constructors = null;
MBeanNotificationInfo[] notifications = null;
MBeanInfo mbeanInfo = new MBeanInfo(classname,

description, attributes,
constructors, operations,
notifications);

// Log when this is called so we know when in the
lifecycle this is used

Throwable trace = new Throwable("getMBeanInfo trace");
log.info("Don't panic, just a stack

trace", trace);
return mbeanInfo;

}

/**
* Returns the value of the attribute with the name matching the
* passed string.
*
* @param attribute the name of the attribute.
* @return the value of the attribute.
* @exception AttributeNotFoundException when there is no such
* attribute.
* @exception MBeanException wraps any error thrown by the
* resource when
* getting the attribute.
* @exception ReflectionException wraps any error invoking the
* resource.
*/
public Object getAttribute(String attribute)

throws AttributeNotFoundException,
MBeanException,
ReflectionException

{
Object value = null;
if (attribute.equals("HelloPrefix")) {

value = getHelloPrefix();
} else if(attribute.equals("EjbJndiName")) {

value = getEjbJndiName();
} else {

throw new AttributeNotFoundException("Unknown
attribute("+attribute+") requested");

}
return value;

}

/**
* Returns the values of the attributes with names matching the
* passed string array.
*
* @param attributes the names of the attribute.
* @return an {@link AttributeList AttributeList} of name
* and value pairs.
*/
public AttributeList getAttributes(String[] attributes)
{

AttributeList values = new AttributeList();
for (int a = 0; a < attributes.length; a++) {

String name = attributes[a];
try {

Object value = getAttribute(name);
Attribute attr = new Attribute(name, value);
values.add(attr);

} catch(Exception e) {

The JBoss JMX Microkernel

97

log.error("Failed to find attribute: "+name, e);
}

}
return values;

}

/**
* Sets the value of an attribute. The attribute and new value
* are passed in the name value pair {@link Attribute
* Attribute}.
*
* @see javax.management.Attribute
*
* @param attribute the name and new value of the attribute.
* @exception AttributeNotFoundException when there is no such
* attribute.
* @exception InvalidAttributeValueException when the new value
* cannot be converted to the type of the attribute.
* @exception MBeanException wraps any error thrown by the
* resource when setting the new value.
* @exception ReflectionException wraps any error invoking the
* resource.
*/
public void setAttribute(Attribute attribute)

throws AttributeNotFoundException,
InvalidAttributeValueException,
MBeanException,
ReflectionException

{
String name = attribute.getName();
if (name.equals("HelloPrefix")) {

String value = attribute.getValue().toString();
setHelloPrefix(value);

} else if(ename.equals("EjbJndiName")) {
String value = attribute.getValue().toString();
setEjbJndiName(value);

} else {
throw new AttributeNotFoundException("Unknown attribute("+name+") requested");

}
}

/**
* Sets the values of the attributes passed as an
* {@link AttributeList AttributeList} of name and new
* value pairs.
*
* @param attributes the name an new value pairs.
* @return an {@link AttributeList AttributeList} of name and
* value pairs that were actually set.
*/
public AttributeList setAttributes(AttributeList attributes)
{

AttributeList setAttributes = new AttributeList();
for(int a = 0; a < attributes.size(); a++) {

Attribute attr = (Attribute) attributes.get(a);
try {

setAttribute(attr);
setAttributes.add(attr);

} catch(Exception ignore) {
}

}
return setAttributes;

}

/**
* Invokes a resource operation.
*
* @param actionName the name of the operation to perform.
* @param params the parameters to pass to the operation.
* @param signature the signartures of the parameters.
* @return the result of the operation.

The JBoss JMX Microkernel

98

* @exception MBeanException wraps any error thrown by the
* resource when performing the operation.
* @exception ReflectionException wraps any error invoking the
* resource.
*/
public Object invoke(String actionName, Object[] params,

String[] signature)
throws MBeanException,

ReflectionException
{

Object rtnValue = null;
log.debug("Begin invoke, actionName="+actionName);
try {

if (actionName.equals("echo")) {
String arg = (String) params[0];
rtnValue = echo(arg);
log.debug("Result: "+rtnValue);

} else if (actionName.equals("create")) {
super.create();

} else if (actionName.equals("start")) {
super.start();

} else if (actionName.equals("stop")) {
super.stop();

} else if (actionName.equals("destroy")) {
super.destroy();

} else {
throw new JMRuntimeException("Invalid state,
don't know about op="+actionName);

}
} catch(Exception e) {

throw new ReflectionException(e, "echo failed");
}

log.debug("End invoke, actionName="+actionName);
return rtnValue;

}

// --- End DynamicMBean interface methods

}

Believe it or not, this is a very trivial MBean. The vast majority of the code is there to provide the MBean
metadata and handle the callbacks from the MBean Server. This is required because a Dynamic MBean is free
to expose whatever management interface it wants. A Dynamic MBean can in fact change its management in-
terface at runtime simply by returning a different metadata value from the getMBeanInfo method. Of course,
clients may not be too happy with such a dynamic object, but the MBean Server will do nothing to prevent a
Dynamic MBean from changing its interface.

There are two points to this example. First, demonstrate how an MBean can depend on an EJB for some of its
functionality and second, how to create MBeans with dynamic management interfaces. If we were to write a
standard MBean with a static interface for this example it would look like the following.

public interface EjbMBeanAdaptorMBean
{

public String getHelloPrefix();
public void setHelloPrefix(String prefix);
public String getEjbJndiName();
public void setEjbJndiName(String jndiName);
public String echo(String arg) throws CreateException, NamingException;
public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

The JBoss JMX Microkernel

99

Moving to lines 67-83, this is where the MBean operation metadata is constructed. The echo(String), cre-
ate(), start(), stop() and destroy() operations are defined by obtaining the corresponding
java.lang.reflect.Method object and adding a description.Let's go through the code and discuss where this inter-
face implementation exists and how the MBean uses the EJB. Beginning with lines 40-51, the two MBeanAt-

tributeInfo instances created define the attributes of the MBean. These attributes correspond to the getHel-

loPrefix/setHelloPrefix and getEjbJndiName/setEjbJndiName of the static interface. One thing to note in
terms of why one might want to use a Dynamic MBean is that you have the ability to associate descriptive text
with the attribute metadata. This is not something you can do with a static interface.

Lines 88-103 correspond to the JBoss service life cycle callbacks. Since we are subclassing the ServiceMBean-

Support utility class, we override the createService, startService, and stopService template callbacks rather
than the create, start, and stop methods of the service interface. Note that we cannot attempt to lookup the
EchoLocalHome interface of the EJB we make use of until the startService method. Any attempt to access the
home interface in an earlier life cycle method would result in the name not being found in JNDI because the
EJB container had not gotten to the point of binding the home interfaces. Because of this dependency we will
need to specify that the MBean service depends on the EchoLocal EJB container to ensure that the service is
not started before the EJB container is started. We will see this dependency specification when we look at the
service descriptor.

Lines 105-121 are the HelloPrefix and EjbJndiName attribute accessors implementations. These are invoked
in response to getAttribute/setAttribute invocations made through the MBean Server.

Lines 123-130 correspond to the echo(String) operation implementation. This method invokes the EchoLoc-

al.echo(String) EJB method. The local bean interface is created using the EchoLocalHome that was obtained
in the startService method.

The remainder of the class makes up the Dynamic MBean interface implementation. Lines 133-152 correspond
to the MBean metadata accessor callback. This method returns a description of the MBean management inter-
face in the form of the javax.management.MBeanInfo object. This is made up of a description, the MBeanAt-

tributeInfo and MBeanOperationInfo metadata created earlier, as well as constructor and notification inform-
ation. This MBean does not need any special constructors or notifications so this information is null.

Lines 154-258 handle the attribute access requests. This is rather tedious and error prone code so a toolkit or in-
frastructure that helps generate these methods should be used. A Model MBean framework based on XML
called XBeans is currently being investigated in JBoss. Other than this, no other Dynamic MBean frameworks
currently exist.

Lines 260-310 correspond to the operation invocation dispatch entry point. Here the request operation action
name is checked against those the MBean handles and the appropriate method is invoked.

The jboss-service.xml descriptor for the MBean is given below. The dependency on the EJB container
MBean is highlighted in bold. The format of the EJB container MBean ObjectName is:
"jboss.j2ee:service=EJB,jndiName=" + <home-jndi-name>

where the <home-jndi-name> is the EJB home interface JNDI name.

<server>
<mbean code="org.jboss.chap2.ex3.EjbMBeanAdaptor"

name="jboss.book:service=EjbMBeanAdaptor">
<attribute name="HelloPrefix">AdaptorPrefix</attribute>
<attribute name="EjbJndiName">local/chap2.EchoBean</attribute>
<depends>jboss.j2ee:service=EJB,jndiName=local/chap2.EchoBean</depends>

</mbean>
</server>

Deploy the example ear by running:

The JBoss JMX Microkernel

100

[starksm@banshee examples]$ ant -Dchap=chap2 -Dex=3 run-example
...
run-example3:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy

On the server console there will be messages similar to the following:

14:57:12,906 INFO [EARDeployer] Init J2EE application: file:/private/tmp/jboss-3.2.6/serv
er/default/deploy/chap2-ex3.ear
14:57:13,044 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.RawDynamicInvoker.preRegister(RawDynamicInvoker.java:187)

...
14:57:13,088 INFO [EjbMBeanAdaptor] preRegister notification seen
14:57:13,093 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.registry.BasicMBeanRegistry.registerMBean(BasicMBeanRegistr

y.java:207)
...
14:57:13,117 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.registry.BasicMBeanRegistry.registerMBean(BasicMBeanRegistr

y.java:235)
...
14:57:13,140 WARN [EjbMBeanAdaptor] Unexcepted error accessing MBeanInfo for null
java.lang.NullPointerException

at org.jboss.system.ServiceMBeanSupport.postRegister(ServiceMBeanSupport.java:418)
at org.jboss.mx.server.RawDynamicInvoker.postRegister(RawDynamicInvoker.java:226)
at org.jboss.mx.server.registry.BasicMBeanRegistry.registerMBean(BasicMBeanRegistr

y.java:312)
...
14:57:13,203 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:481)

...
14:57:13,232 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:481)

...
14:57:13,420 INFO [EjbModule] Deploying Chap2EchoInfoBean
14:57:13,443 INFO [EjbModule] Deploying chap2.EchoBean
14:57:13,488 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:481)

...
14:57:13,542 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:481)

...
14:57:13,558 INFO [EjbMBeanAdaptor] Begin invoke, actionName=create
14:57:13,560 INFO [EjbMBeanAdaptor] Notified of create state
14:57:13,562 INFO [EjbMBeanAdaptor] End invoke, actionName=create
14:57:13,604 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)

The JBoss JMX Microkernel

101

at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:481)
at org.jboss.mx.server.MBeanServerImpl.isInstanceOf(MBeanServerImpl.java:639)

...
14:57:13,621 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
at org.jboss.mx.server.RawDynamicInvoker.getMBeanInfo(RawDynamicInvoker.java:172)
at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:481)
at org.jboss.mx.util.JMXInvocationHandler.<init>(JMXInvocationHandler.java:110)
at org.jboss.mx.util.MBeanProxy.get(MBeanProxy.java:76)
at org.jboss.mx.util.MBeanProxy.get(MBeanProxy.java:64)

14:57:13,641 INFO [EjbMBeanAdaptor] Begin invoke, actionName=getState
14:57:13,942 INFO [EjbMBeanAdaptor] Begin invoke, actionName=start
14:57:13,944 INFO [EjbMBeanAdaptor] Notified of start state
14:57:13,951 INFO [EjbMBeanAdaptor] Testing Echo
14:57:13,983 INFO [EchoBean] echo, info=echo info, arg=, arg=startService
14:57:13,986 INFO [EjbMBeanAdaptor] echo(startService) = startService
14:57:13,988 INFO [EjbMBeanAdaptor] End invoke, actionName=start
14:57:13,991 INFO [EJBDeployer] Deployed: file:/private/tmp/jboss-3.2.6/server/default/tm
p/deploy/tmp1418chap2-ex3.ear-contents/chap2-ex3.jar
14:57:14,075 INFO [EARDeployer] Started J2EE application: file:/private/tmp/jboss-3.2.6/s
erver/default/deploy/chap2-ex3.ear

The stack traces are not exceptions. They are traces coming from line 150 of the EjbMBeanAdaptor code to
demonstrate that clients ask for the MBean interface when they want to discover the MBean's capabilities. No-
tice that the EJB container (lines with [EjbModule]) is started before the example MBean (lines with
[EjbMBeanAdaptor]).

Now, let's invoke the echo method using the JMX console web application. Browse to ht-
tp://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=jboss.book%3Aservice%3DEjbM
BeanAdaptor and scroll down to the echo operation section. The view should be like that shown in Figure 2.20.

The JBoss JMX Microkernel

102

Figure 2.20. The EjbMBeanAdaptor MBean operations JMX console view

As shown, we have already entered an argument string of "-echo-arg" into the ParamValue text field. Press the
Invoke button and a result string of "AdaptorPrefix-echo-arg" is displayed on the results page. The server con-
sole will show several stack traces from the various metadata queries issues by the JMX console and the
MBean invoke method debugging lines:

10:51:48,671 INFO [EjbMBeanAdaptor] Begin invoke, actionName=echo
10:51:48,671 INFO [EjbMBeanAdaptor] Lookup EchoLocalHome@local/chap2.EchoBean
10:51:48,687 INFO [EchoBean] echo, info=echo info, arg=, arg=-echo-arg
10:51:48,687 INFO [EjbMBeanAdaptor] Result: AdaptorPrefix-echo-arg
10:51:48,687 INFO [EjbMBeanAdaptor] End invoke, actionName=echo

2.5. JBoss Deployer Architecture

JBoss has an extensible deployment architecture that allows one to incorporate components into the bare JBoss
JMX microkernel. Figure 2.21shows the classes in the deployment layer.

The JBoss JMX Microkernel

103

Figure 2.21. The deployment layer classes

The MainDeployer is the deployment entry point. Requests to deploy a component are sent to the MainDeploy-
er and it determines if there is a subdeployer capable of handling the deployment, and if there is, it delegates the
deployment to the subdeployer. We saw an example of this when we looked at how the MainDeployer used the
SARDeployer to deploy MBean services. The current deployers included with JBoss are:

• AbstractWebContainer: This subdeployer handles web application archives (WARs). It accepts deployment
archives and directories whose name ends with a "war" suffix. WARs must have a WEB-INF/web.xml
descriptor and may have a WEB-INF/jboss-web.xml descriptor.

• EARDeployer: This subdeployer handles enterprise application archives (EARs). It accepts deployment
archives and directories whose name ends with an "ear" suffix. EARs must have a META-
INF/application.xml descriptor and may have a META-INF/jboss-app.xml descriptor.

• EJBDeployer: This subdeployer handles enterprise bean jars. It accepts deployment archives and directories
whose name ends with a "jar" suffix. EJB jars must have a META-INF/ejb-jar.xml descriptor and may have
a META-INF/jboss.xml descriptor.

• JARDeployer: This subdeployer handles library jar archives. The only restriction it places on an archive is
that it cannot contain a WEB-INF directory.

• RARDeployer: This subdeployer handles JCA resource archives (RARs). It accepts deployment archives
and directories whose name ends with a "rar" suffix. RARs must have a META-INF/ra.xml descriptor.

• SARDeployer: This subdeployer handles JBoss MBean service archives (SARs). It accepts deployment
archives and directories whose name ends with a "sar" suffix, as well as standalone XML files that end with
"service.xml". SARs that are jars must have a META-INF/jboss-service.xml descriptor.

The JBoss JMX Microkernel

104

The MainDeployer, JARDeployer and SARDeployer are hard coded deployers in the JBoss server core. The
AbstractWebContainer, EARDeployer, EJBDeployer, and RARDeployer are MBean services that register
themselves as deployers with the MainDeployer using the addDeployer(SubDeployer) operation. The SubDe-
ployer interface is shown below.

public interface SubDeployer
{

/**
* The <code>accepts</code> method
is called by MainDeployer to
* determine which deployer is suitable for a DeploymentInfo.
*
* @param sdi a <code>DeploymentInfo</code> value
* @return a <code>boolean</code> value
*
* @jmx:managed-operation
*/
boolean accepts(DeploymentInfo sdi);

/**
* The <code>init</code> method lets the deployer set
* a few properties of the DeploymentInfo, such as the watch url.
*
* @param sdi a <code>DeploymentInfo</code> value
* @throws DeploymentException if an error occurs
*
* @jmx:managed-operation
*/
void init(DeploymentInfo sdi) throws DeploymentException;

/**
* Set up the components of the deployment that do not
* refer to other components
*
* @param sdi a <code>DeploymentInfo</code> value
* @throws DeploymentException Failed to deploy
*
* @jmx:managed-operation
*/
void create(DeploymentInfo sdi) throws DeploymentException;

/**
* The <code>start</code> method sets up relationships
* with other components.
*
* @param sdi a <code>DeploymentInfo</code> value
* @throws DeploymentException if an error occurs
*
* @jmx:managed-operation
*/
void start(DeploymentInfo sdi) throws DeploymentException;

/**
* The <code>stop</code> method removes relationships
* between components.
*
* @param sdi a <code>DeploymentInfo</code> value
* @throws DeploymentException if an error occurs
*
* @jmx:managed-operation
*/
void stop(DeploymentInfo sdi) throws DeploymentException;

/**
* The <code>destroy</code> method
removes individual components
*
* @param sdi a <code>DeploymentInfo</code> value
* @throws DeploymentException if an error occurs

The JBoss JMX Microkernel

105

*
* @jmx:managed-operation
*/
void destroy(DeploymentInfo sdi) throws DeploymentException;

}

The DeploymentInfo object is basically a data structure that encapsulates the complete state of a deployable
component. When the MainDeployer receives a deployment request, it iterates through its registered subde-
ployers and invokes the accepts(DeploymentInfo) method on the subdeployer. The first subdeployer to return
true is chosen and the deployment deployer and the MainDeployer will delegate the init, create, start, stop and
destroy deployment life cycle operations to the subdeployer.

2.5.1. Deployers and ClassLoaders

Deployers are the mechanism by which components are brought into a JBoss server. Deployers are also the cre-
ators of the majority of UCL instances, and the primary creator is the MainDeployer. The MainDeployer cre-
ates the UCL for a deployment early on during its init method. The UCL is created by calling the Deploy-
mentInfo.createClassLoaders() method. As of the 3.0.5RC1 release, only the topmost DeploymentInfo will ac-
tually create a UCL. All subdeployments will add their class paths to their parent DeploymentInfo UCL. Previ-
ously every subdeployment created a UCL for its deployment, and a seperate UCL for every manifest or
classpath reference. This could cause problems because classes ended up being loaded by more than one UCL
and IllegalAccessError s and LinkageError s would result. Every deployment does have a standalone URL-
ClassLoader that uses the deployment URL as its path. This is used to localize the loading of resources such as
deployment descriptors. Figure 2.22 provides an illustration of the interaction between Deployers, Deploy-
mentInfos and class loaders.

The JBoss JMX Microkernel

106

Figure 2.22. An illustration of the class loaders involved with an EAR deployment

The figure illustrates an EAR deployment with EJB and WAR subdeployments. The EJB deployment refer-
ences the lib/util.jar utility jar via its manifest. The WAR includes classes in its WEB-INF/classes directory as
well as the WEB-INF/lib/jbosstest-web-util.jar. Each deployment has a DeploymentInfo instance that has a
URLClassLoader pointing to the deployment archive. The DeploymentInfo associated with some.ear is the only
one to have a UCL created. The ejbs.jar and web.war DeploymentInfo s add their deployment archive to the
some.ear UCL classpath, and share this UCL as their deployemnt UCL. The EJBDeployer also adds any mani-
fest jars to the EAR UCL.

The WARDeployer behaves differently than other deployers in that it only adds its WAR archive to the De-
ploymentInfo UCL classpath. The loading of classes from the WAR WEB-INF/classes and WEB-INF/lib loca-
tions is handled by the servlet container class loader. The servlet container class loaders delegate to the WAR
DeploymentInfo UCL as their parent class loader, but the server container class loader is not part of the JBoss
class loader repository. Therefore, classes inside of a WAR are not visible to other components. Classes that
need to be shared between web application components and other components such as EJBs, and MBeans need
to be loaded into the shared class loader repository either by including the classes into a SAR or EJB deploy-

The JBoss JMX Microkernel

107

ment, or by referencing a jar containing the shared classes through a manifest Class-Path entry. In the case of a
SAR, the SAR classpath element in the service deployment serves the same purpose as a jar manifest Class-
Path.

2.6. Exposing MBean Events via SNMP

3.2.2 added an snmp-adaptor service that can be used to intercept JMX notifications emitted by MBeans, con-
vert them to traps and send them to SNMP managers. In this respect the snmp-adaptor acts as a SNMP agent.
Future versions may offer support for full agent get/set functionality that maps onto MBean attributes or opera-
tions.

It can be used to integrate JBoss with higher order system/network management platforms (e.g., HP Open-
View), thus making the MBeans visible to those systems. The MBean developer can instrument the MBeans by
producing notifications for any significant event (e.g. server coldstart). The adaptor can then be configured to
intercept and map those notifications to SNMP traps. The adaptor uses the JoeSNMP package from OpenNMS
as the SNMP engine.

SnmpAgentService is the main MBean that implements the SNMP agent. It is configured by means of three dif-
ferent configuration files:

• managers.xml: configures where to send traps

• mbeans.xml: configures the monitored MBeans/notifications types

• notifications.xml: specifies the exact mapping of each notification type to a corresponding SNMP trap

2.6.1. The SNMP Adaptor Service

The org.jboss.jmx.adaptor.snmp.agent.SnmpAgentService allows one to send V1 or V2 SNMP traps to one or
more SNMP managers defined by their IP address, listening port number and expected SNMP version.

• HeartBeatPeriod: The period in seconds at which hearteat notifications are generated.

• ManagersResName: Specifies the resource name of the file containing SNMP manager specifications. The
content model for this file is shown in Figure 2.23.

• MonitoredObjectsResName: Specifies the resource name of the file that configures which JMX objects to
monitor for events. The content model for this file is shown in Figure 2.25.

• NotificationMapResName: Specifies the resource name of the file containing the JMX notification to SN-
MP trap mappings. The content model for this file is shown in Figure 2.24.

• TrapFactoryClassName: The org.jboss.jmx.adaptor.snmp.agent.TrapFactory implementation class that
takes care of translation of JMX Notifications into SNMP V1 and V2 traps.

• TimerName: Specifies the JMX ObjectName of the JMX timer serivce to use for heartbeat notifications.

The JBoss JMX Microkernel

108

Figure 2.23. The schema for the SNMP managers file

Figure 2.24. The schema for the notification to trap mapping file

Figure 2.25. The schema for the monitored objects file

2.6.2. The Event to Trap Service

org.jboss.jmx.adaptor.snmp.trapd.TrapdService is a simple MBean that acts as an SNMP Manager. It listens to
a configurable port for incoming traps and logs them as DEBUG messages using the system logger. You can
modify the log4j configuration to redirect the log output to a file. SnmpAgentService and TrapdService are not
dependent with each other.

2.7. Remote Access to Services, Detached Invokers

The JBoss JMX Microkernel

109

In addition to the MBean services notion that allows for the ability to integrate arbitrary functionality, JBoss
also has a detached invoker concept that allows MBean services to expose functional interfaces via arbitrary
protocols for remote access by clients. This notion first showed up in 3.0 for the EJB container and it has been
further generalized to any MBean service in 3.2. The notion of a detached invoker is that remoting and the pro-
tocol by which a service is accessed is a functional aspect or service from independent of the component. Thus,
one can make a naming service available for use via RMI/JRMP, RMI/HTTP, RMI/SOAP, or any arbitrary cus-
tom transport.

Let's begin our discussion of the detached invoker architecture with an overview of the components involved.
The main components in the detached invoker architecture are shown in Figure 2.26.

Figure 2.26. The main components in the detached invoker architecture

On the client side, there exist a client proxy which exposes the interface(s) of the MBean service. This is the
same smart, compile-less dynamic proxy that we use for EJB home and remote interfaces. The only difference
between the proxy for an arbitrary service and the EJB is the set of interfaces exposed as well as the client side
interceptors found inside the proxy. The client interceptors are represented by the rectangles found inside of the
client proxy. An interceptor is an assembly line type of pattern that allows for transformation of a method in-
vocation and/or return values. A client obtains a proxy through some lookup mechanism, typically JNDI. Al-
though RMI is indicated in Figure 2.26, the only real requirement on the exposed interface and its types is that
they are serializable between the client server over JNDI as well as the transport layer.

The choice of the transport layer is determined by the last interceptor in the client proxy, which is referred to as
the "Invoker Interceptor" in Figure 2.26. The invoker interceptor contains a reference to the transport specific

The JBoss JMX Microkernel

110

stub of the server side "Detached Invoker" MBean service. The invoker interceptor also handles the optimiza-
tion of calls that occur within the same VM as the target MBean. When the invoker interceptor detects that this
is the case the call is passed to a call-by-reference invoker that simply passes the invocation along to the target
MBean.

The detached invoker service is responsible for making a generic invoke operation available via the transport
the detached invoker handles. The Invoker interface illustrates the generic invoke operation.

package org.jboss.invocation;

import java.rmi.Remote;
import org.jboss.proxy.Interceptor;
import org.jboss.util.id.GUID;

public interface Invoker
extends Remote

{
GUID ID = new GUID();

Object invoke(Invocation invocation) throws Exception;
}

The Invoker interface extends Remote to be compatible with RMI, but this does not mean that an invoker must
expose an RMI service stub. The detached invoker service simply acts as a transport gateway that accepts in-
vocations represented as the org.jboss.invocation.Invocation object over its specific transport, unmarshalls the
invocation, forwards the invocation onto the destination MBean service, represented by the "Target MBean" in
Figure 2.26, and marshalls the return value or exception resulting from the forwarded call back to the client.

The Invocation object is just a representation of a method invocation context. This includes the target MBean
name, the method, the method arguments, a context of information associated with the proxy by the proxy fact-
ory, and an arbitrary map of data associated with the invocation by the client proxy interceptors. The following
listing shows the key methods of the Invocation class.

package org.jboss.invocation;

import java.lang.reflect.Method;
import java.security.Principal;
import java.util.Map;
import java.util.HashMap;
import javax.transaction.Transaction;

public class Invocation
{

/** The signature of the invoke() method */
public static final String[] INVOKE_SIGNATURE =

{"org.jboss.invocation.Invocation"};

/**
* Contextual information to the invocation that is not part of
* the payload.
*/
public Map transient_payload;

/**
* as_is classes that will not be marshalled by the invocation
* (java.* and javax.* or anything in system classpath is OK)
*/
public Map as_is_payload;

/**
* Payload will be marshalled for type hiding at the RMI layers.
*/
public Map payload;

The JBoss JMX Microkernel

111

protected InvocationContext invocationContext;
protected Object[] args;
protected Object objectName;
protected Method method;

public Invocation()
{

payload = new HashMap();
as_is_payload = new HashMap();
transient_payload = new HashMap();

}

public Invocation(Object id, Method m, Object[] args,
Transaction tx,
Principal identity, Object credential)

{
this.payload = new HashMap();
this.as_is_payload = new HashMap();
this.transient_payload = new HashMap();

setId(id);
setMethod(m);
setArguments(args);
setTransaction(tx);
setPrincipal(identity);
setCredential(credential);

}

public void setValue(Object key, Object value)
{

setValue(key, value, PayloadKey.PAYLOAD);
}

public void setValue(Object key, Object value, PayloadKey type)
{

if(type == PayloadKey.TRANSIENT) {
transient_payload.put(key,value);

} else if(type == PayloadKey.AS_IS) {
as_is_payload.put(key,value);

} else if(type == PayloadKey.PAYLOAD) {
payload.put(key,value);

} else {
throw new IllegalArgumentException("Unknown

PayloadKey: " + type);
}

}

public Object getValue(Object key)
{

// find where it is
Object rtn = payload.get(key);
if (rtn != null) return rtn;

rtn = as_is_payload.get(key);
if (rtn != null) return rtn;

rtn = transient_payload.get(key);
return rtn;

}

public Object getPayloadValue(Object key)
{

return payload.get(key);
}

// ... Convience accessor methods deleted...
}

The configuration of the client proxy is done by the server side proxy factory MBean service, indicated by the

The JBoss JMX Microkernel

112

"Proxy Factory" component in Figure 2.26. The proxy factory preforms the following tasks:

• Create a dynamic proxy that implements the interface the target MBean wishes to expose.

• Associate the client proxy interceptors with the dynamic proxy handler.

• Associate the invocation context with the dynamic proxy. This includes the target MBean, detached invoker
stub and the proxy JNDI name.

• Make the proxy available to clients by binding the proxy into JNDI.

The last component in \Figure 2.26 is the "Target MBean" service that wishes to expose an interface for invoca-
tions to remote clients. The steps required for an MBean service to be accessible through a given interface are:

• Define a JMX operation matching the signature: public Object invoke(org.jboss.invocation.Invocation)
throws Exception

• Create a HashMap<Long, Method> mapping from the exposed interface java.lang.reflect.Method s to the
long hash representation using the org.jboss.invocation.MarshalledInvocation.calculateHash method.

• Implement the invoke(Invocation) JMX operation and use the interface method hash mapping to transform
from the long hash representation of the invoked method to the java.lang.reflect.Method of the exposed in-
terface. Reflection is used to perform the actual invocation on the object associated with the MBean service
that actually implements the exposed interface.

2.7.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Ser-
vice

In the section on connecting to the JMX server we mentioned that there was a service that allows one to access
the javax.management.MBeanServer via any protocol using an invoker service. In this section we present the
org.jboss.jmx.connector.invoker.InvokerAdaptorService and its configuration for access via RMI/JRMP as an
example of the steps required to provide remote access to an MBean service.

The InvokerAdaptorService is a simple MBean service that only exists to fulfill the target MBean role in the
detached invoker pattern.

Example 2.18. The InvokerAdaptorService MBean

package org.jboss.jmx.connector.invoker;
public interface InvokerAdaptorServiceMBean

extends org.jboss.system.ServiceMBean
{

Class getExportedInterface();
void setExportedInterface(Class exportedInterface);

Object invoke(org.jboss.invocation.Invocation invocation)
throws Exception;

}

package org.jboss.jmx.connector.invoker;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.UndeclaredThrowableException;
import java.util.Collections;
import java.util.HashMap;

The JBoss JMX Microkernel

113

import java.util.Map;

import javax.management.MBeanServer;
import javax.management.ObjectName;

import org.jboss.invocation.Invocation;
import org.jboss.invocation.MarshalledInvocation;
import org.jboss.mx.server.ServerConstants;
import org.jboss.system.ServiceMBeanSupport;
import org.jboss.system.Registry;

public class InvokerAdaptorService
extends ServiceMBeanSupport
implements InvokerAdaptorServiceMBean, ServerConstants

{
private static ObjectName mbeanRegistry;

static {
try {

mbeanRegistry = new ObjectName(MBEAN_REGISTRY);
} catch (Exception e) {

throw new RuntimeException(e.toString());
}

}

private Map marshalledInvocationMapping = new HashMap();
private Class exportedInterface;

public Class getExportedInterface()
{

return exportedInterface;
}

public void setExportedInterface(Class exportedInterface)
{

this.exportedInterface = exportedInterface;
}

protected void startService()
throws Exception

{
// Build the interface method map
Method[] methods = exportedInterface.getMethods();
HashMap tmpMap = new HashMap(methods.length);
for (int m = 0; m < methods.length; m ++) {

Method method = methods[m];
Long hash = new Long(MarshalledInvocation.calculateHash(method));
tmpMap.put(hash, method);

}

marshalledInvocationMapping = Collections.unmodifiableMap(tmpMap);
// Place our ObjectName hash into the Registry so invokers can
// resolve it
Registry.bind(new Integer(serviceName.hashCode()), serviceName);

}

protected void stopService()
throws Exception

{
Registry.unbind(new Integer(serviceName.hashCode()));

}

public Object invoke(Invocation invocation)
throws Exception

{
// Make sure we have the correct classloader before unmarshalling
Thread thread = Thread.currentThread();
ClassLoader oldCL = thread.getContextClassLoader();

// Get the MBean this operation applies to

The JBoss JMX Microkernel

114

ClassLoader newCL = null;
ObjectName objectName = (ObjectName)

invocation.getValue("JMX_OBJECT_NAME");
if (objectName != null) {

// Obtain the ClassLoader associated with the MBean deployment
newCL = (ClassLoader)

server.invoke(mbeanRegistry, "getValue",
new Object[] { objectName, CLASSLOADER },
new String[] { ObjectName.class.getName(),

"java.lang.String" });
}

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(newCL);

}

try {
// Set the method hash to Method mapping
if (invocation instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledInvocationMapping);

}

// Invoke the MBeanServer method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {

String name = method.getName();
Class[] sig = method.getParameterTypes();
Method mbeanServerMethod =

MBeanServer.class.getMethod(name, sig);
value = mbeanServerMethod.invoke(server, args);

} catch(InvocationTargetException e) {
Throwable t = e.getTargetException();
if (t instanceof Exception) {

throw (Exception) t;
} else {

throw new UndeclaredThrowableException(t, method.toString());
}

}

return value;
} finally {

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(oldCL);

}
}

}
}

Let's go through the key details of this service. The InvokerAdaptorServiceMBean Standard MBean interface
of the InvokerAdaptorService has a single ExportedInterface attribute and a single invoke(Invocation) opera-
tion. The ExportedInterface attribute allows customization of the type of interface the service exposes to cli-
ents. This has to be "compatible" with the MBeanServer class in terms of method name and signature as we
will see. The invoke(Invocation) operation is the required entry point that target MBean services must expose
to participate in the detached invoker pattern. This operation is invoked by the detached invoker services that
have been configured to provide access to the InvokerAdaptorService.

Lines 54-64 of the InvokerAdaptorService build the HashMap<Long, Method> of the ExportedInterface Class
using the org.jboss.invocation.MarshalledInvocation.calculateHash(Method) utility method. Because
java.lang.reflect.Method instances are not serializable, a MarshalledInvocation version of the non-serializable
Invocation class is used to marshall the invocation between the client and server. The MarshalledInvocation re-
places the Method instances with their corresponding hash representation. On the server side, the MarshalledIn-

The JBoss JMX Microkernel

115

vocation must be told what the hash to Method mapping is.

Line 64 creates a mapping between the InvokerAdaptorService service name and its hashCode representation.
This is used by detached invokers to determine what the target MBean ObjectName of an Invocation is. When
the target MBean name is store in the Invocation, its store as its hashCode because ObjectName s are relatively
expensive objects to create. The org.jboss.system.Registry is a global map like construct that invokers use to
store the hashCode to ObjectName mappings in.

Lines 77-93 obtain the name of the MBean on which the MBeanServer operation is being performed and look-
up the ClassLoader associated with the MBean's SAR deployment. This information is available via the
org.jboss.mx.server.registry.BasicMBeanRegistry, a JBoss JMX implementation specific class. It is generally
necessary for an MBean to establish the correct class loading context because the detached invoker protocol
layer may not have access to the class loaders needed to unmarshall the types associated with an invocation.

Lines 101-105 install the ExposedInterface class method hash to method mapping if the invocation argument is
of type MarshalledInvocation. The method mapping calculated previously at lines 54-62 is used here.

Lines 107-114 perform a second mapping from the ExposedInterface Method to the matching method of the
MBeanServer class. The InvokerServiceAdaptor decouples the ExposedInterface from the MBeanServer class
in that it allows an arbitrary interface. This is needed on one hand because the standard java.lang.reflect.Proxy
class can only proxy interfaces. It also allows one to only expose a subset of the MBeanServer methods and add
transport specific exceptions like java.rmi.RemoteException to the ExposedInterface method signatures.

Line 115 dispatches the MBeanServer method invocation to the MBeanServer instance to which the Invoker-
AdaptorService was deployed. The server instance variable is inherited from the ServiceMBeanSupport super-
class.

Lines 117-124 handle any exceptions coming from the reflective invocation including the unwrapping of any
declared exception thrown by the invocation.

Line 126 is the return of the successful MBeanServer method invocation result.

Note that the InvokerAdaptorService MBean does not deal directly with any transport specific details. There is
the calculation of the method hash to Method mapping, but this is a transport independent detail.

Now let's take a look at how the InvokerAdaptorService may be used to expose the same
org.jboss.jmx.adaptor.rmi.RMIAdaptor interface via RMI/JRMP as seen in Connecting to JMX Using RMI. We
will start by presenting the proxy factory and InvokerAdaptorService configurations found in the default setup
in the jmx-invoker-adaptor-service.sar deployment. Example 2.19 shows the jboss-service.xml descriptor for
this deployment.

Example 2.19. The default jmx-invoker-adaptor-server.sar jboss-service.xml deployment descriptor

<server>
<!-- The JRMP invoker proxy configuration for the InvokerAdaptorService -->
<mbean code="org.jboss.invocation.jrmp.server.JRMPProxyFactory"

name="jboss.jmx:type=adaptor,name=Invoker,protocol=jrmp,service=proxyFactory">
<!-- Use the standard JRMPInvoker from conf/jboss-service.xxml -->
<attribute name="InvokerName">jboss:service=invoker,type=jrmp</attribute>
<!-- The target MBean is the InvokerAdaptorService configured below -->
<attribute name="TargetName">jboss.jmx:type=adaptor,name=Invoker</attribute>
<!-- Where to bind the RMIAdaptor proxy -->
<attribute name="JndiName">jmx/invoker/RMIAdaptor</attribute>
<!-- The RMI compabitle MBeanServer interface -->
<attribute name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>
<attribute name="ClientInterceptors">

<iterceptors>

The JBoss JMX Microkernel

116

<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
<interceptor>

org.jboss.jmx.connector.invoker.client.InvokerAdaptorClientInterceptor </interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</iterceptors>
</attribute>
<depends>jboss:service=invoker,type=jrmp</depends>

</mbean>
<!-- This is the service that handles the RMIAdaptor invocations by routing

them to the MBeanServer the service is deployed under. -->
<mbean code="org.jboss.jmx.connector.invoker.InvokerAdaptorService"

name="jboss.jmx:type=adaptor,name=Invoker">
<attribute name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor </attribute>

</mbean>
</server>

The first MBean, org.jboss.invocation.jrmp.server.JRMPProxyFactory, is the proxy factory MBean service that
creates proxies for the RMI/JRMP protocol. The complete reference information on the JRMPProxyFactory
may be found in section The JRMPProxyFactory Service - Building Dynamic JRMP Proxies. The configuration
of this service as shown in Example 2.19 states that the JRMPInvoker will be used as the detached invoker, the
InvokerAdaptorService is the target mbean to which requests will be forwarded, that the proxy will expose the
RMIAdaptor interface, the proxy will be bound into JNDI under the name "jmx/invoker/RMIAdaptor", and the
proxy will contain 3 interceptors: ClientMethodInterceptor, InvokerAdaptorClientInterceptor, InvokerIntercept-
or. The configuration of the InvokerAdaptorService simply sets the RMIAdaptor interface that the service is ex-
posing.

The last piece of the configuration for exposing the InvokerAdaptorService via RMI/JRMP is the detached in-
voker. The detached invoker we will use is the standard RMI/JRMP invoker used by the EJB containers for
home and remote invocations, and this is the org.jboss.invocation.jrmp.server.JRMPInvoker MBean service
configured in the conf/jboss-service.xml descriptor. That we can use the same service instance emphasizes the
detached nature of the invokers. The JRMPInvoker simply acts as the RMI/JRMP endpoint for all RMI/JRMP
proxies regardless of the interface(s) the proxies expose or the service the proxies utilize.

2.7.2. Detached Invoker Reference

2.7.2.1. The JRMPInvoker - RMI/JRMP Transport

The org.jboss.invocation.jrmp.server.JRMPInvoker class is an MBean service that provides the RMI/JRMP im-
plementation of the Invoker interface. The JRMPInvoker exports itself as an RMI server so that when it is used
as the Invoker in a remote client, the JRMPInvoker stub is sent to the client instead and invocations use the
RMI/JRMP protocol.

The JRMPInvoker MBean supports a number of attribute to configure the RMI/JRMP transport layer. Its con-
figurable attributes are:

• RMIObjectPort: sets the RMI server socket listening port number. This is the port RMI clients will con-
nect to when communicating through the proxy interface. The default setting in the jboss-service.xml
descriptor is 4444, and if not specified, the attribute defaults to 0 to indicate an anonymous port should be
used.

• RMIClientSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIClientSocketFactory interface to use during export of the proxy interface.

• RMIServerSocketFactory: specifies a fully qualified class name for the

The JBoss JMX Microkernel

117

java.rmi.server.RMIServerSocketFactory interface to use during export of the proxy interface.

• ServerAddress: specifies the interface address that will be used for the RMI server socket listening port.
This can be either a DNS hostname or a dot-decimal Internet address. Since the RMIServerSocketFactory
does not support a method that accepts an InetAddress object, this value is passed to the RMIServerSocket-
Factory implementation class using reflection. A check for the existence of a: public void setBindAd-
dress(java.net.InetAddress addr) method is made, and if one exists, the RMIServerSocketAddr value is
passed to the RMIServerSocketFactory implementation. If the RMIServerSocketFactory implementation
does not support such a method, the ServerAddress value will be ignored.

• SecurityDomain: specifies the JNDI name of an org.jboss.security.SecurityDomain interface implementa-
tion to associate with the RMIServerSocketFactory implementation. The value will be passed to the
RMIServerSocketFactory using reflection to locate a method with a signature of: public void setSecurity-
Domain(org.jboss.security.SecurityDomain d) If no such method exists the SecurityDomain value will be
ignored.

2.7.2.2. The PooledInvoker - RMI/Socket Transport

The org.jboss.invocation.pooled.server.PooledInvoker is an MBean service that provides RMI over a custom
socket transport implementation of the Invoker interface. The PooledInvoker exports itself as an RMI server so
that when it is used as the Invoker in a remote client, the PooledInvoker stub is sent to the client instead and in-
vocations use the a custom socket protocol.

The PooledInvoker MBean supports a number of attribute to configure the socket transport layer. Its configur-
able attributes are:

• NumAcceptThreads: The number of threads that exist for accepting client connections. The default is 1.

• MaxPoolSize: The number of server threads for processing client. The default is 300.

• SocketTimeout: The socket timeout value passed to the Socket.setSoTimeout() cmethod. The default is
60000.

• ServerBindPort: The port used for the server socket. A value of 0 indicates that an anonymous port should
be chosen.

• ClientConnectAddress: The address that the client passes to the Socket(addr, port) constructor. This de-
faults to the server InetAddress.getLocalHost() value.

• ClientConnectPort: The port that the client passes to the Socket(addr, port) constructor. The default is the
port of the server listening socket.

• ClientMaxPoolSize: The client side maximum number of threads. The default is 300.

• Backlog: The backlog associated with the server accept socket. The default is 200.

• EnableTcpNoDelay: A boolean flag indicating if client sockets will enable the TcpNoDelay flag on the
socket. The default is false.

• ServerBindAddress: The address on which the server binds its listening socket. The default is an empty
value which indicates the server should be bound on all interfaces.

• TransactionManagerService: The JMX ObjectName of the JTA transaction manager service.

The JBoss JMX Microkernel

118

2.7.2.3. The IIOPInvoker - RMI/IIOP Transport

The org.jboss.invocation.iiop.IIOPInvoker class is an MBean service that provides the RMI/IIOP implementa-
tion of the Invoker interface. The IIOPInvoker IIOP invoker that routes IIOP requests to CORBA servants are
used by the This used by the org.jboss.proxy.ejb.IORFactory proxy factory to create RMI/IIOP proxies.
However, rather than creating Java proxies (as the JRMP proxy factory does), this factory creates CORBA
IORs. An <code>IORFactory</code> is associated to a given enterprise bean. It registers with the IIOP invoker
two CORBA servants: anEjbHomeCorbaServant for the bean's EJBHome and an EjbObjectCorbaServant for
the bean's EJBObjects.

The IIOPInvoker MBean has no configurable proprties, since all properties are configured from the conf/jac-
orb.properties property file used by the JacORB CORBA service.

2.7.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies

The org.jboss.invocation.jrmp.server.JRMPProxyFactory MBean service is a proxy factory that can expose any
interface with RMI compatible semantics for access to remote clients using JRMP as the transport.

The JRMPProxyFactory supports the following attributes:

• InvokerName: The server side JRMPInvoker MBean service JMX ObjectName string that will handle the
RMI/JRMP transport.

• TargetName: The server side MBean that exposes the invoke(Invocation) JMX operation for the exported
interface. This is used as the destination service for any invocations done through the proxy.

• JndiName: The JNDI name under which the proxy will be bound.

• ExportedInterface: The fully qualified class name of the interface that the proxy implements. This is the
typed view of the proxy that the client uses for invocations.

• ClientInterceptors: An XML fragment of interceptors/interceptor elements with each interceptor element
body specifying the fully qualified class name of an org.jboss.proxy.Interceptor implementation to include
in the proxy interceptor stack. The ordering of the interceptors/interceptor elements defines the order of the
interceptors.

2.7.2.5. The HttpInvoker - RMI/HTTP Transport

The org.jboss.invocation.http.server.HttpInvoker MBean service provides the provides support for making in-
vocations into the JMX bus over HTTP. Unlike the JRMPInvoker, the HttpInvoker is not an implementation of
Invoker, but it does implement the Invoker.invoke method. The HttpInvoker is accessed indirectly by issuing an
HTTP POST against the org.jboss.invocation.http.servlet.InvokerServlet. The HttpInvoker exports a client side
proxy in the form of the org.jboss.invocation.http.interfaces.HttpInvokerProxy class, which is an implementa-
tion of Invoker, and is serializable. The HttpInvoker is a drop in replacement for the JRMPInvoker as the target
of the bean-invoker and home-invoker EJB configuration elements. The HttpInvoker and InvokerServlet are de-
ployed in the http-inovker.sar discussed in the JNDI chapter in the section entitled Accessing JNDI over HTTP

The HttpInvoker supports the following attributes:

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name of a system property
that will be resolved inside the client VM to obtain the http URL to the InvokerServlet. This value can itself
be a reference to a system property resolved in the server if the value is of the form ${x} where x is the

The JBoss JMX Microkernel

119

name of the system property. This allows the URL or client side system property to be set in one place and
reused in the HttpInvoker config as well as the InvokerServlet config.

• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the concatenation of
invokerURLPrefix + the local host + invokerURLSuffix. An example prefix is "http://", and this is the de-
fault.

• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the concatenation of in-
vokerURLPrefix + the local host + invokerURLSuffix. An example suffix is
":8080/invoker/JMXInvokerServlet" and this is the default.

• UseHostName: A boolean flag if the InetAddress.getHostName() or getHostAddress() method should be
used as the host component of invokerURLPrefix + host + invokerURLSuffix. If true getHostName() is
used, false getHostAddress().

2.7.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org.jboss.proxy.generic.ProxyFactoryHA service is an extension of the ProxyFactoryHA that is a cluster
aware factory. The ProxyFactoryHA fully supports all of the attributes of the JRMPProxyFactory. This means
that customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as
well. In addition, the following cluster specific attributes are supported:

• PartitionObjectName: The JMX ObjectName of the cluster service to which the proxy is to be associated
with.

• LoadBalancePolicy: The class name of the org.jboss.ha.framework.interfaces.LoadBalancePolicy interface
implementation to associate with the proxy.

2.7.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer added in JBoss-3.0.2 has been extended to allow for software load balancing of the in-
vocations in a clustered environment in JBoss-3.0.3. An HA capable extension of the HTTP invoker has been
added that borrows much of its functionality from the HA-RMI/JRMP clustering.

To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through
either a jboss.xml descriptor, or the standardjboss.xml descriptor.

2.7.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies

The org.jboss.invocation.http.server.HttpProxyFactory MBean service is a proxy factory that can expose any
interface with RMI compatible semantics for access to remote clients using HTTP as the transport.

The HttpProxyFactory supports the following attributes:

• InvokerName: The server side MBean that exposes the invoke operation for the exported interface. The
name is embedded into the HttpInvokerProxy context as the target to which the invocation should be for-
warded by the HttpInvoker.

• JndiName: The JNDI name under which the HttpInvokerProxy will be bound. This is the name clients
lookup to obtain the dynamic proxy that exposes the service interfaces and marshalls invocations over HT-
TP. This may be specified as an empty value to indicate that the proxy should not be bound into JNDI.

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name of a system property

The JBoss JMX Microkernel

120

that will be resolved inside the client VM to obtain the http URL to the InvokerServlet. This value can itself
be a reference to a system property resolved in the server if the value is of the form ${x} where x is the
name of the system property.

• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the concatenation of
invokerURLPrefix + the local host + invokerURLSuffix. An example prefix is "http://", and this is the de-
fault.

• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the concatenation of in-
vokerURLPrefix + the local host + invokerURLSuffix. An example suffix is
":8080/invoker/JMXInvokerServlet" and this is the default.

• UseHostName: A boolean flag indicating if the InetAddress.getHostName() or getHostAddress() method
should be used as the host component of invokerURLPrefix + host + invokerURLSuffix. If true getHost-
Name() is used, false getHostAddress().

• ExportedInterface: The name of the RMI compatible interface that the HttpInvokerProxy implements.

2.7.2.9. Steps to Expose Any RMI Interface via HTTP

Using the HttpProxyFactory MBean and JMX, you can expose any interface for access using HTTP as the
transport. The interface to expose does not have to be an RMI interface, but it does have to be compatible with
RMI in that all method parameters and return values are serializable. There is also no support for converting
RMI interfaces used as method parameters or return values into their stubs.

The three steps to making your object invocable via HTTP are:

import java.lang.reflect.Method;
import java.util.HashMap;
import org.jboss.invocation.MarshalledInvocation;

HashMap marshalledInvocationMapping = new HashMap();

// Build the Naming interface method map
Method[] methods = SRPRemoteServerInterface.class.getMethods();
for(int m = 0; m < methods.length; m ++) {

Method method = methods[m];
Long hash = new Long(MarshalledInvocation.calculateHash(method));
marshalledInvocationMapping.put(hash, method);

}

import org.jboss.invocation.Invocation;
import org.jboss.invocation.MarshalledInvocation;

public Object invoke(Invocation invocation)
throws Exception

{
SRPRemoteServerInterface theServer = <the_actual_rmi_server_object>;
// Set the method hash to Method mapping
if (invocation instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledInvocationMapping);

}

// Invoke the Naming method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {

value = method.invoke(theServer, args);
} catch(InvocationTargetException e) {

Throwable t = e.getTargetException();

The JBoss JMX Microkernel

121

if (t instanceof Exception) {
throw (Exception) e;

} else {
throw new UndeclaredThrowableException(t, method.toString());

}
}

return value;
}

<!-- Expose the SRP service interface via HTTP -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"

name="jboss.security.tests:service=SRP/HTTP">
<attribute name="InvokerURL">http://localhost:8080/invoker/JMXInvokerServlet</attribute>
<attribute name="InvokerName">jboss.security.tests:service=SRPService</attribute>
<attribute name="ExportedInterface">org.jboss.security.srp.SRPRemoteServerInterface
</attribute><attribute name="JndiName">srp-test-http/SRPServerInterface</attribute>

</mbean>

• Create a mapping of longs to the RMI interface methods using the MarshalledInvocation.calculateHash

method. Here for example, is the procedure for an RMI SRPRemoteServerInterface interface:

• Either create or extend an existing MBean to support an invoke operation. Its signature is Object in-

voke(Invocation invocation) throws Exception, and the steps it performs are as shown here for the
SRPRemoteServerInterface interface. Note that this uses the marshalledInvocationMapping from step 1
to map from the Long method hashes in the MarshalledInvocation to the Method for the interface.

• Create a configuration of the HttpProxyFactory MBean to make the RMI/HTTP proxy available through
JNDI. For example:

Any client may now lookup the RMI interface from JNDI using the name specified in the HttpProxyFactory

(e.g., srp-test-http/SRPServerInterface) and use the obtain proxy in exactly the same manner as the RMI/
JRMP version.

The JBoss JMX Microkernel

122

3
Naming on JBoss

The JNDI Naming Service

This chapter discusses the JBoss JNDI based naming service and the role of JNDI in JBoss and J2EE. An intro-
duction to the basic JNDI API and common usage conventions will also be discussed. The JBoss specific con-
figuration of J2EE component naming environments defined by the standard deployment descriptors will also
be addressed. The final topic is the configuration and architecture of the JBoss naming service.

The JBoss naming service is an plays a key role in J2EE because it provides a naming service that allows a user
to map a name onto an object. This is a fundamental need in any programming environment because developers
and administrators want to be able to refer to objects and services by recognizable names. A good example of a
pervasive naming service is the Internet Domain Name System (DNS). The DNS service allows you to refer to
hosts using logical names, rather than their numeric Internet addresses. JNDI serves a similar role in J2EE by
enabling developers and administrators to create name-to-object bindings for use in J2EE components.

3.1. An Overview of JNDI

JNDI is a standard Java API that is bundled with JDK1.3 and higher. JNDI provides a common interface to a
variety of existing naming services: DNS, LDAP, Active Directory, RMI registry, COS registry, NIS, and file
systems. The JNDI API is divided logically into a client API that is used to access naming services, and a ser-
vice provider interface (SPI) that allows the user to create JNDI implementations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the core JNDI classes
to expose the naming service using the common JNDI client interface. An implementation of JNDI for a nam-
ing service is referred to as a JNDI provider. JBoss naming is an example JNDI implementation, based on the
SPI classes. Note that the JNDI SPI is not needed by J2EE component developers.

For a thorough introduction and tutorial on JNDI, which covers both the client and service provider APIs, see
the Sun tutorial at http://java.sun.com/products/jndi/tutorial/.

3.1.1. The JNDI API

The main JNDI API package is the javax.naming package. It contains five interfaces, 10 classes, and several
exceptions. There is one key class, InitialContext, and two key interfaces, Context and Name

3.1.1.1. Names

The notion of a name is of fundamental importance in JNDI. The naming system determines the syntax that the
name must follow. The syntax of the naming system allows the user to parse string representations of names in-
to its components. A name is used with a naming system to locate objects. In the simplest sense, a naming sys-
tem is just a collection of objects with unique names. To locate an object in a naming system you provide a
name to the naming system, and the naming system returns the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its path relative to

123

http://java.sun.com/products/jndi/tutorial/

the root of the file system, with each component in the path separated by the forward slash character ("/"). The
file's path is ordered from left to right. The pathname/usr/jboss/readme.txt, for example, names a file
readme.txt in the directory jboss, under the directory usr, located in the root of the file system. JBoss naming
uses a UNIX-style namespace as its naming convention.

The javax.naming.Name interface represents a generic name as an ordered sequence of components. It can be a
composite name (one that spans multiple namespaces), or a compound name (one that is used within a single
hierarchical naming system). The components of a name are numbered. The indexes of a name with N compon-
ents range from 0 up to, but not including, N. The most significant component is at index 0. An empty name
has no components.

A composite name is a sequence of component names that span multiple namespaces. An example of a com-
posite name would be the hostname+file commonly used with UNIX commands like scp. For example, this
command copies localfile.txt to the file remotefile.txt in the tmp directory on host ahost.someorg.org:

scp localfile.txt ahost.someorg.org:/tmp/remotefile.txt

A compound name is derived from a hierarchical namespace. Each component in a compound name is an atom-
ic name, meaning a string that cannot be parsed into smaller components. A file pathname in the UNIX file sys-
tem is an example of a compound name. ahost.someorg.org:/tmp/remotefile.txt is a composite name that
spans the DNS and UNIX file system namespaces. The components of the composite name are
ahost.someorg.org and /tmp/remotefile.txt. A component is a string name from the namespace of a nam-
ing system. If the component comes from a hierarchical namespace, that component can be further parsed into
its atomic parts by using the javax.naming.CompoundName class. The JNDI API provides the
javax.naming.CompositeName class as the implementation of the Name interface for composite names.

3.1.1.2. Contexts

The javax.naming.Context interface is the primary interface for interacting with a naming service. The Con-

text interface represents a set of name-to-object bindings. Every context has an associated naming convention
that determines how the context parses string names into javax.naming.Name instances. To create a name to
object binding you invoke the bind method of a Context and specify a name and an object as arguments. The
object can later be retrieved using its name using the Context lookup method. A Context will typically provide
operations for binding a name to an object, unbinding a name, and obtaining a listing of all name-to-object
bindings. The object you bind into a Context can itself be of type Context . The Context object that is bound is
referred to as a subcontext of the Context on which the bind method was invoked.

As an example, consider a file directory with a pathname /usr, which is a context in the UNIX file system. A
file directory named relative to another file directory is a subcontext (commonly referred to as a subdirectory).
A file directory with a pathname /usr/jboss names a jboss context that is a subcontext of usr. In another ex-
ample, a DNS domain, such as org, is a context. A DNS domain named relative to another DNS domain is an-
other example of a subcontext. In the DNS domain jboss.org, the DNS domain jboss is a subcontext of org
because DNS names are parsed right to left.

3.1.1.2.1. Obtaining a Context using InitialContext

All naming service operations are performed on some implementation of the Context interface. Therefore, you
need a way to obtain a Context for the naming service you are interested in using. The
javax.naming.IntialContext class implements the Context interface, and provides the starting point for in-
teracting with a naming service.

When you create an InitialContext, it is initialized with properties from the environment. JNDI determines
each property's value by merging the values from the following two sources, in order.

Naming on JBoss

124

• The first occurrence of the property from the constructor's environment parameter and (for appropriate
properties) the applet parameters and system properties.

• All jndi.properties resource files found on the classpath.

For each property found in both of these two sources, the property's value is determined as follows. If the prop-
erty is one of the standard JNDI properties that specify a list of JNDI factories, all of the values are concaten-
ated into a single colon-separated list. For other properties, only the first value found is used. The preferred
method of specifying the JNDI environment properties is through a jndi.properties file, which allows your
code to externalize the JNDI provider specific information so that changing JNDI providers will not require
changes to your code or recompilation.

The Context implementation used internally by the InitialContext class is determined at runtime. The default
policy uses the environment property java.naming.factory.initial, which contains the class name of the
javax.naming.spi.InitialContextFactory implementation. You obtain the name of the InitialContext-

Factory class from the naming service provider you are using.

Example 3.1 gives a sample jndi.properties file a client application would use to connect to a JBossNS ser-
vice running on the local host at port 1099. The client application would need to have the jndi.properties file
available on the application classpath. These are the properties that the JBossNS JNDI implementation requires.
Other JNDI providers will have different properties and values.

Example 3.1. A sample jndi.properties file

JBossNS properties
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

3.1.2. J2EE and JNDI - The Application Component Environment

JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE component
code from the environment in which the code is deployed. Use of the application component's environment al-
lows the application component to be customized without the need to access or change the application compon-
ent's source code. The application component environment is referred to as the ENC, the enterprise naming
context. It is the responsibility of the application component container to make an ENC available to the contain-
er components in the form of JNDI Context. The ENC is utilized by the participants involved in the life cycle
of a J2EE component in the following ways.

• Application component business logic should be coded to access information from its ENC. The component
provider uses the standard deployment descriptor for the component to specify the required ENC entries.
The entries are declarations of the information and resources the component requires at runtime.

• The container provides tools that allow a deployer of a component to map the ENC references made by the
component developer to the deployment environment entity that satisfies the reference.

• The component deployer utilizes the container tools to ready a component for final deployment.

• The component container uses the deployment package information to build the complete component ENC
at runtime

Naming on JBoss

125

The complete specification regarding the use of JNDI in the J2EE platform can be found in Section 5 of the
J2EE 1.3 specification. The J2EE specification is available at http://java.sun.com/j2ee/download.html.

An application component instance locates the ENC using the JNDI API. An application component instance
creates a javax.naming.InitialContext object by using the no argument constructor and then looks up the
naming environment under the name java:comp/env. The application component's environment entries are
stored directly in the ENC, or in its subcontexts. Example 3.2 illustrates the prototypical lines of code a com-
ponent uses to access its ENC.

Example 3.2. ENC access sample code

// Obtain the application component's ENC
Context iniCtx = new InitialContext();
Context compEnv = (Context) iniCtx.lookup("java:comp/env");

An application component environment is a local environment that is accessible only by the component when
the application server container thread of control is interacting with the application component. This means that
an EJB Bean1 cannot access the ENC elements of EJB Bean2, and visa-versa. Similarly, Web application Web1

cannot access the ENC elements of Web application Web2 or Bean1 or Bean2 for that matter. Also, arbitrary cli-
ent code, whether it is executing inside of the application server VM or externally cannot access a component's
java:comp JNDI context. The purpose of the ENC is to provide an isolated, read-only namespace that the ap-
plication component can rely on regardless of the type of environment in which the component is deployed.
The ENC must be isolated from other components because each component defines its own ENC content.
Components A and B, for example, may define the same name to refer to different objects. For example, EJB
Bean1 may define an environment entry java:comp/env/red to refer to the hexadecimal value for the RGB col-
or for red, while Web application Web1 may bind the same name to the deployment environment language loc-
ale representation of red.

There are three commonly used levels of naming scope in JBoss: names under java:comp, names under java:,
and any other name. As discussed, the java:comp context and its subcontexts are only available to the applica-
tion component associated with that particular context. Subcontexts and object bindings directly under java:

are only visible within the JBoss server virtual machine and not to remote clients. Any other context or object
binding is available to remote clients, provided the context or object supports serialization. You'll see how the
isolation of these naming scopes is achieved in the Section 3.2.

An example of where the restricting a binding to the java: context is useful would be a
javax.sql.DataSource connection factory that can only be used inside of the JBoss server where the associ-
ated database pool resides. On the other hand, an EJB home interface would be boung to a globally visible
name that should accessible by remote client.

3.1.2.1. ENC Usage Conventions

JNDI is used as the API for externalizing a great deal of information from an application component. The JNDI
name that the application component uses to access the information is declared in the standard ejb-jar.xml de-
ployment descriptor for EJB components, and the standard web.xml deployment descriptor for Web compon-
ents. Several different types of information may be stored in and retrieved from JNDI including:

• Environment entries as declared by the env-entry elements

• EJB references as declared by ejb-ref and ejb-local-ref elements.

Naming on JBoss

126

http://java.sun.com/j2ee/download.html

• Resource manager connection factory references as declared by the resource-ref elements

• Resource environment references as declared by the resource-env-ref elements

Each type of deployment descriptor element has a JNDI usage convention with regard to the name of the JNDI
context under which the information is bound. Also, in addition to the standard deployment descriptor element,
there is a JBoss server specific deployment descriptor element that maps the JNDI name as used by the applica-
tion component to the deployment environment JNDI name.

3.1.2.1.1. The ejb-jar.xml ENC Elements

The EJB 2.0 deployment descriptor describes a collection of EJB components and their environment. Each of
the three types of EJB components (session, entity, and message-driven) support the specification of an EJB
local naming context. The ejb-jar.xml description is a logical view of the environment that the EJB needs to
operate. Because the EJB component developer generally cannot know into what environment the EJB will be
deployed, the developer describes the component environment in a deployment environment independent man-
ner using logical names. It is the responsibility of a deployment administrator to link the EJB component logic-
al names to the corresponding deployment environment resources.

Figure 3.1 gives a graphical view of the EJB deployment descriptor DTD without the non-ENC elements. Only
the session element is shown fully expanded as the ENC elements for entity and mesage-driven are identical.
The full ejb-jar.xml DTD is available from the Sun web site at at http://java.sun.com/dtd/ejb-jar_2_0.dtd.

Naming on JBoss

127

http://java.sun.com/dtd/ejb-jar_2_0.dtd

Figure 3.1. The ENC elements in the standard ejb-jar.xml 2.0 deployment descriptor.

3.1.2.1.2. The web.xml ENC Elements

The Servlet 2.3 deployment descriptor describes a collection of Web components and their environment. The
ENC for a Web application is declared globally for all servlets and JSP pages in the Web application. Because
the Web application developer generally cannot know into what environment the Web application will be de-
ployed, the developer describes the component environment in a deployment environment independent manner
using logical names. It is the responsibility of a deployment administrator to link the Web component logical
names to the corresponding deployment environment resources.

Figure 3.2 gives a graphical view of the Web application deployment descriptor DTD without the non-ENC
elements. The full web.xml DTD is available from the Sun Web site at ht-
tp://java.sun.com/dtd/web-app_2_3.dtd.

Naming on JBoss

128

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd

Figure 3.2. The ENC elements in the standard servlet 2.3 web.xml deployment descriptor.

3.1.2.1.3. The jboss.xml ENC Elements

The JBoss EJB deployment descriptor provides the mapping from the EJB component ENC JNDI names to the
actual deployed JNDI name. It is the responsibility of the application deployer to map the logical references
made by the application component to the corresponding physical resource deployed in a given application
server configuration. In JBoss, this is done for the ejb-jar.xml descriptor using the jboss.xml deployment
descriptor. Figure 3.3 gives a graphical view of the JBoss EJB deployment descriptor DTD without the non-
ENC elements. This is virtually identical to the corresponding elements of the ejb-jar.xml for the levels
shown.

Naming on JBoss

129

Figure 3.3. The ENC elements in the JBoss 3.2 jboss.xml deployment descriptor.

3.1.2.1.4. The jboss-web.xml ENC Elements

The JBoss Web deployment descriptor provides the mapping from the Web application ENC JNDI names to
the actual deployed JNDI name. It is the responsibility of the application deployer to map the logical references
made by the Web application to the corresponding physical resource deployed in a given application server
configuration. In JBoss, this is done for the web.xml descriptor using the jboss-web.xml deployment
descriptor. Figure 3.4 gives a graphical view of the JBoss Web deployment descriptor DTD without the non-
ENC elements. The full jboss-web.xml DTD is available from the JBoss Web site at ht-
tp://www.jboss.org/j2ee/dtd/jboss_web_3_2.dtd as well as the docs/dtd directory of the distribution.

Naming on JBoss

130

http://www.jboss.org/j2ee/dtd/jboss_web_3_2.dtd
http://www.jboss.org/j2ee/dtd/jboss_web_3_2.dtd

Figure 3.4. ENC elements in the JBoss 3.2 jboss-web.xml deployment descriptor.

3.1.2.1.5. Environment Entries

Environment entries are the simplest form of information stored in a component ENC, and are similar to operat-
ing system environment variables like those found on UNIX or Windows. Environment entries are a name-
to-value binding that allows a component to externalize a value and refer to the value using a name.

An environment entry is declared using an env-entry element in the standard deployment descriptors. The
env-entry element contains the following child elements:

• An optional description element that provides a description of the entry

• An env-entry-name element giving the name of the entry relative to java:comp/env

• An env-entry-type element giving the Java type of the entry value that must be one of:

• java.lang.Byte

• java.lang.Boolean

• java.lang.Character

• java.lang.Double

• java.lang.Float

• java.lang.Integer

Naming on JBoss

131

• java.lang.Long

• java.lang.Short

• java.lang.String

• An env-entry-value element giving the value of entry as a string

An example of an env-entry fragment from an ejb-jar.xml deployment descriptor is given in Example 3.3.
There is no JBoss specific deployment descriptor element because an env-entry is a complete name and value
specification. Example 3.4 shows a sample code fragment for accessing the maxExemptions and taxRate env-

entry values declared in the deployment descriptor.

Example 3.3. An example ejb-jar.xml env-entry fragment

<!-- ... -->
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<env-entry>

<description>The maximum number of tax exemptions allowed </description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>The tax rate </description>
<env-entry-name>taxRate</env-entry-name>
<env-entry-type>java.lang.Float</env-entry-type>
<env-entry-value>0.23</env-entry-value>

</env-entry>
</session>
<!-- ... -->

Example 3.4. ENC env-entry access code fragment

InitialContext iniCtx = new InitialContext();
Context envCtx = (Context) iniCtx.lookup("java:comp/env");
Integer maxExemptions = (Integer) envCtx.lookup("maxExemptions");
Float taxRate = (Float) envCtx.lookup("taxRate");

3.1.2.1.6. EJB References

It is common for EJBs and Web components to interact with other EJBs. Because the JNDI name under which
an EJB home interface is bound is a deployment time decision, there needs to be a way for a component de-
veloper to declare a reference to an EJB that will be linked by the deployer. EJB references satisfy this require-
ment.

An EJB reference is a link in an application component naming environment that points to a deployed EJB
home interface. The name used by the application component is a logical link that isolates the component from
the actual name of the EJB home in the deployment environment. The J2EE specification recommends that all
references to enterprise beans be organized in the java:comp/env/ejb context of the application component's
environment.

Naming on JBoss

132

An EJB reference is declared using an ejb-ref element in the deployment descriptor. Each ejb-ref element
describes the interface requirements that the referencing application component has for the referenced enter-
prise bean. The ejb-ref element contains the following child elements:

• An optional description element that provides the purpose of the reference.

• An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env context.
To place the reference under the recommended java:comp/env/ejb context, use an ejb/link-name form
for the ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.

• A home element that gives the fully qualified class name of the EJB home interface.

• A remote element that gives the fully qualified class name of the EJB remote interface.

• An optional ejb-link element that links the reference to another enterprise bean in the same EJB JAR or in
the same J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If there are
multiple enterprise beans with the same ejb-name, the value uses the path name specifying the location of
the ejb-jar file that contains the referenced component. The path name is relative to the referencing ejb-

jar file. The Application Assembler appends the ejb-name of the referenced bean to the path name separ-
ated by #. This allows multiple beans with the same name to be uniquely identified.

An EJB reference is scoped to the application component whose declaration contains the ejb-ref element. This
means that the EJB reference is not accessible from other application components at runtime, and that other ap-
plication components may define ejb-ref elements with the same ejb-ref-name without causing a name con-
flict. Example 3.5 provides an ejb-jar.xml fragment that illustrates the use of the ejb-ref element. A code
sample that illustrates accessing the ShoppingCartHome reference declared in Example 3.5 is given in Ex-
ample 3.6.

Example 3.5. An example ejb-jar.xml ejb-ref descriptor fragment

<!-- ... -->
<session>

<ejb-name>ShoppingCartBean</ejb-name>
<!-- ...-->

</session>

<session>
<ejb-name>ProductBeanUser</ejb-name>
<!--...-->
<ejb-ref>

<description>This is a reference to the store products entity </description>
<ejb-ref-name>ejb/ProductHome</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>org.jboss.store.ejb.ProductHome</home>

</ejb-ref>
<remote> org.jboss.store.ejb.Product</remote>

</session>

<session>
<ejb-ref>

<ejb-name>ShoppingCartUser</ejb-name>
<!--...-->
<ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.store.ejb.ShoppingCartHome</home>
<remote> org.jboss.store.ejb.ShoppingCart</remote>
<ejb-link>ShoppingCartBean</ejb-link>

Naming on JBoss

133

</ejb-ref>
</session>

<entity>
<description>The Product entity bean </description>
<ejb-name>ProductBean</ejb-name>
<!--...-->

</entity>

<!--...-->

Example 3.6. ENC ejb-ref access code fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ShoppingCartHome home = (ShoppingCartHome) ejbCtx.lookup("ShoppingCartHome");

3.1.2.1.7. EJB References with jboss.xml and jboss-web.xml

The JBoss specific jboss.xml EJB deployment descriptor affects EJB references in two ways. First, the jndi-

name child element of the session and entity elements allows the user to specify the deployment JNDI name
for the EJB home interface. In the absence of a jboss.xml specification of the jndi-name for an EJB, the home
interface is bound under the ejb-jar.xml ejb-name value. For example, the session EJB with the ejb-name of
ShoppingCartBean in Example 3.5 would have its home interface bound under the JNDI name ShoppingCart-

Bean in the absence of a jboss.xml jndi-name specification.

The second use of the jboss.xml descriptor with respect to ejb-refs is the setting of the destination to which a
component's ENC ejb-ref refers. The ejb-link element cannot be used to refer to EJBs in another enterprise
application. If your ejb-ref needs to access an external EJB, you can specify the JNDI name of the deployed
EJB home using the jboss.xml ejb-ref/jndi-name element.

The jboss-web.xml descriptor is used only to set the destination to which a Web application ENC ejb-ref

refers. The content model for the JBoss ejb-ref is as follows:

• An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or web.xml

standard descriptor

• A jndi-name element that specifies the JNDI name of the EJB home interface in the deployment environ-
ment

Example 3.7 provides an example jboss.xml descriptor fragment that illustrates the following usage points:

• The ProductBeanUserejb-ref link destination is set to the deployment name of jboss/

store/ProductHome

• The deployment JNDI name of the ProductBean is set to jboss/store/ProductHome

Example 3.7. An example jboss.xml ejb-ref fragment

<!-- ... -->
<session>

<ejb-name>ProductBeanUser</ejb-name>
<ejb-ref>

Naming on JBoss

134

<ejb-ref-name>ejb/ProductHome</ejb-ref-name>
<jndi-name>jboss/store/ProductHome</jndi-name>

</ejb-ref>
</session>

<entity>
<ejb-name>ProductBean</ejb-name>
<jndi-name>jboss/store/ProductHome</jndi-name>
<!-- ... -->

</entity>
<!-- ... -->

3.1.2.1.8. EJB Local References

EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces use a call by refer-
ence semantic and therefore do not incur any RMI serialization overhead. An EJB local reference is a link in an
application component naming environment that points to a deployed EJB local home interface. The name used
by the application component is a logical link that isolates the component from the actual name of the EJB local
home in the deployment environment. The J2EE specification recommends that all references to enterprise
beans be organized in the java:comp/env/ejb context of the application component's environment.

An EJB local reference is declared using an ejb-local-ref element in the deployment descriptor. Each ejb-

local-ref element describes the interface requirements that the referencing application component has for the
referenced enterprise bean. The ejb-local-ref element contains the following child elements:

• An optional description element that provides the purpose of the reference.

• An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env context.
To place the reference under the recommended java:comp/env/ejb context, use an ejb/link-name form
for the ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.

• A local-home element that gives the fully qualified class name of the EJB local home interface.

• A local element that gives the fully qualified class name of the EJB local interface.

• An ejb-link element that links the reference to another enterprise bean in the ejb-jar file or in the same
J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If there are multiple en-
terprise beans with the same ejb-name, the value uses the path name specifying the location of the ejb-jar

file that contains the referenced component. The path name is relative to the referencing ejb-jar file. The
Application Assembler appends the ejb-name of the referenced bean to the path name separated by #. This
allows multiple beans with the same name to be uniquely identified. An ejb-link element must be spe-
cified in JBoss to match the local reference to the corresponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the ejb-local-ref

element. This means that the EJB local reference is not accessible from other application components at
runtime, and that other application components may define ejb-local-ref elements with the same ejb-

ref-name without causing a name conflict. Example 3.8 provides an ejb-jar.xml fragment that illustrates the
use of the ejb-local-ref element. A code sample that illustrates accessing the ProbeLocalHome reference de-
clared in Example 3.8 is given in Example 3.9.

Example 3.8. An example ejb-jar.xml ejb-local-ref descriptor fragment

Naming on JBoss

135

<!-- ... -->
<session>

<ejb-name>Probe</ejb-name>
<home>org.jboss.test.perf.interfaces.ProbeHome</home>
<remote>org.jboss.test.perf.interfaces.Probe</remote>
<local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
<local>org.jboss.test.perf.interfaces.ProbeLocal</local>
<ejb-class>org.jboss.test.perf.ejb.ProbeBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>

</session>
<session>

<ejb-name>PerfTestSession</ejb-name>
<home>org.jboss.test.perf.interfaces.PerfTestSessionHome</home>
<remote>org.jboss.test.perf.interfaces.PerfTestSession</remote>
<ejb-class>org.jboss.test.perf.ejb.PerfTestSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-ref>

<ejb-ref-name>ejb/ProbeHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.test.perf.interfaces.SessionHome</home>
<remote>org.jboss.test.perf.interfaces.Session</remote>
<ejb-link>Probe</ejb-link>

</ejb-ref>
<ejb-local-ref>

<ejb-ref-name>ejb/ProbeLocalHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
<local>org.jboss.test.perf.interfaces.ProbeLocal</local>
<ejb-link>Probe</ejb-link>

</ejb-local-ref>
</session>
<!-- ... -->

Example 3.9. ENC ejb-local-ref access code fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ProbeLocalHome home = (ProbeLocalHome) ejbCtx.lookup("ProbeLocalHome");

3.1.2.1.9. Resource Manager Connection Factory References

Resource manager connection factory references allow application component code to refer to resource factor-
ies using logical names called resource manager connection factory references. Resource manager connection
factory references are defined by the resource-ref elements in the standard deployment descriptors. The De-

ployer binds the resource manager connection factory references to the actual resource manager connection
factories that exist in the target operational environment using the jboss.xml and jboss-web.xml descriptors.

Each resource-ref element describes a single resource manager connection factory reference. The resource-

ref element consists of the following child elements:

• An optional description element that provides the purpose of the reference.

• A res-ref-name element that specifies the name of the reference relative to the java:comp/env context.
The resource type based naming convention for which subcontext to place the res-ref-name into is dis-
cussed in the next paragraph.

• A res-type element that specifies the fully qualified class name of the resource manager connection fact-

Naming on JBoss

136

ory.

• A res-auth element that indicates whether the application component code performs resource signon pro-
grammatically, or whether the container signs on to the resource based on the principal mapping informa-
tion supplied by the Deployer. It must be one of Application or Container.

• An optional res-sharing-scope element. This currently is not supported by JBoss.

The J2EE specification recommends that all resource manager connection factory references be organized in
the subcontexts of the application component's environment, using a different subcontext for each resource
manager type. The recommended resource manager type to subcontext name is as follows:

• JDBC DataSource references should be declared in the java:comp/env/jdbc subcontext.

• JMS connection factories should be declared in the java:comp/env/jms subcontext.

• JavaMail connection factories should be declared in the java:comp/env/mail subcontext.

• URL connection factories should be declared in the java:comp/env/url subcontext.

Example 3.10 shows an example web.xml descriptor fragment that illustrates the resource-ref element usage.
Example 3.11 provides a code fragment that an application component would use to access the DefaultMail re-
source declared by the resource-ref.

Example 3.10. A web.xml resource-ref descriptor fragment

<web>
<!-- ... -->
<servlet>

<servlet-name>AServlet</servlet-name>
<!-- ... -->

</servlet>
<!-- ... -->
<!-- JDBC DataSources (java:comp/env/jdbc) -->
<resource-ref>

<description>The default DS</description>
<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<!-- JavaMail Connection Factories (java:comp/env/mail) -->
<resource-ref>

<description>Default Mail</description>
<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<!-- JMS Connection Factories (java:comp/env/jms) -->
<resource-ref>

<description>Default QueueFactory</description>
<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-re>

Example 3.11. ENC resource-ref access sample code fragment

Context initCtx = new InitialContext();

Naming on JBoss

137

javax.mail.Session s = (javax.mail.Session)
initCtx.lookup("java:comp/env/mail/DefaultMail");

3.1.2.1.10. Resource Manager Connection Factory References with jboss.xml
and jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application deploy-
ment descriptor is to provide the link from the logical name defined by the res-ref-name element to the JNDI
name of the resource factory as deployed in JBoss. This is accomplished by providing a resource-ref element
in the jboss.xml or jboss-web.xml descriptor. The JBoss resource-ref element consists of the following
child elements:

• A res-ref-name element that must match the res-ref-name of a corresponding resource-ref element
from the ejb-jar.xml or web.xml standard descriptors

• An optional res-type element that specifies the fully qualified class name of the resource manager connec-
tion factory

• A jndi-name element that specifies the JNDI name of the resource factory as deployed in JBoss

• A res-url element that specifies the URL string in the case of a resource-ref of type java.net.URL

Example 3.12 provides a sample jboss-web.xml descriptor fragment that shows sample mappings of the re-

source-ref elements given in Example 3.10.

Example 3.12. A sample jboss-web.xml resource-ref descriptor fragment

<jboss-web>
<!-- ... -->
<resource-ref>

<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<jndi-name>java:/DefaultDS</jndi-name>

</resource-ref>
<resource-ref>

<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<jndi-name>java:/Mail</jndi-name>

</resource-ref>
<resource-ref>

<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<jndi-name>QueueConnectionFactory</jndi-name>

</resource-ref>
<!-- ... -->

</jboss-web>

3.1.2.1.11. Resource Environment References

Resource environment references are elements that refer to administered objects that are associated with a re-
source (for example, JMS destinations) using logical names. Resource environment references are defined by
the resource-env-ref elements in the standard deployment descriptors. The Deployer binds the resource en-
vironment references to the actual administered objects location in the target operational environment using the
jboss.xml and jboss-web.xml descriptors.

Naming on JBoss

138

Each resource-env-ref element describes the requirements that the referencing application component has for
the referenced administered object. The resource-env-ref element consists of the following child elements:

• An optional description element that provides the purpose of the reference.

• A resource-env-ref-name element that specifies the name of the reference relative to the java:comp/env

context. Convention places the name in a subcontext that corresponds to the associated resource factory
type. For example, a JMS queue reference named MyQueue should have a resource-env-ref-name of jms/
MyQueue.

• A resource-env-ref-type element that specifies the fully qualified class name of the referenced object.
For example, in the case of a JMS queue, the value would be javax.jms.Queue.

Example 3.13 provides an example resource-ref-env element declaration by a session bean. Example 3.14
gives a code fragment that illustrates how to look up the StockInfo queue declared by the resource-env-ref.

Example 3.13. An example ejb-jar.xml resource-env-ref fragment

<session>
<ejb-name>MyBean</ejb-name>

<resource-env-ref>
<description>This is a reference to a JMS queue used in the

processing of Stock info
</description>
<resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>
<!-- ... -->

</session>

Example 3.14. ENC resource-env-ref access code fragment

InitialContext iniCtx = new InitialContext();
javax.jms.Queue q = (javax.jms.Queue)
envCtx.lookup("java:comp/env/jms/StockInfo");

3.1.2.1.12. Resource Environment References and jboss.xml, jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application deploy-
ment descriptor is to provide the link from the logical name defined by the resource-env-ref-name element to
the JNDI name of the administered object deployed in JBoss. This is accomplished by providing a resource-

env-ref element in the jboss.xml or jboss-web.xml descriptor. The JBoss resource-env-ref element con-
sists of the following child elements:

• A resource-env-ref-name element that must match the resource-env-ref-name of a corresponding re-

source-env-ref element from the ejb-jar.xml or web.xml standard descriptors

• A jndi-name element that specifies the JNDI name of the resource as deployed in JBoss

Example 3.15 provides a sample jboss.xml descriptor fragment that shows a sample mapping for the Stock-

Info resource-env-ref.

Naming on JBoss

139

Example 3.15. A sample jboss.xml resource-env-ref descriptor fragment

<session>
<ejb-name>MyBean</ejb-name>

<resource-env-ref>
<resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
<jndi-name>queue/StockInfoQueue</jndi-name>

</resource-env-ref>
<!-- ... -->

</session>

3.2. The JBossNS Architecture

The JBossNS architecture is a Java socket/RMI based implementation of the javax.naming.Context interface.
It is a client/server implementation that can be accessed remotely. The implementation is optimized so that ac-
cess from within the same VM in which the JBossNS server is running does not involve sockets. Same VM ac-
cess occurs through an object reference available as a global singleton. Figure 3.5 illustrates some of the key
classes in the JBossNS implementation and their relationships.

Figure 3.5. Key components in the JBossNS architecture.

Naming on JBoss

140

We will start with the NamingService MBean. The NamingService MBean provides the JNDI naming service.
This is a key service used pervasively by the J2EE technology components. The configurable attributes for the
NamingService are as follows.

• Port: The jnp protocol listening port for the NamingService. If not specified default is 1099, the same as
the RMI registry default port.

• RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not specified the
default is 0 which means use any available port.

• BindAddress: The specific address the NamingService listens on. This can be used on a multi-homed host
for a java.net.ServerSocket that will only accept connect requests on one of its addresses.

• RmiBindAddress: The specific address the RMI server portion of the NamingService listens on. This can
be used on a multi-homed host for a java.net.ServerSocket that will only accept connect requests on one
of its addresses. If this is not specified and the BindAddress is, the RmiBindAddress defaults to the BindAd-

dress value.

• Backlog: The maximum queue length for incoming connection indications (a request to connect) is set to
the backlog parameter. If a connection indication arrives when the queue is full, the connection is refused.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory implementation
class name. If not specified the default RMIClientSocketFactory is used.

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory implementation
class name. If not specified the default RMIServerSocketFactory is used.

• JNPServerSocketFactory: An optional custom javax.net.ServerSocketFactory implementation class
name. This is the factory for the ServerSocket used to bootstrap the download of the JBossNS Naming in-
terface. If not specified the javax.net.ServerSocketFactory.getDefault() method value is used.

The NamingService also creates the java:comp context such that access to this context is isolated based on the
context class loader of the thread that accesses the java:comp context. This provides the application component
private ENC that is required by the J2EE specs. This segregation is accomplished by binding a
javax.naming.Reference to a context that uses the org.jboss.naming.ENCFactory as its
javax.naming.ObjectFactory. When a client performs a lookup of java:comp, or any subcontext, the ENC-

Factory checks the thread context ClassLoader, and performs a lookup into a map using the ClassLoader as
the key.

If a context instance does not exist for the class loader instance, one is created and associated with that class
loader in the ENCFactory map. Thus, correct isolation of an application component's ENC relies on each com-
ponent receiving a unique ClassLoader that is associated with the component threads of execution.

The NamingService delegates its functionality to an org.jnp.server.Main MBean. The reason for the duplic-
ate MBeans is because JBossNS started out as a stand-alone JNDI implementation, and can still be run as such.
The NamingService MBean embeds the Main instance into the JBoss server so that usage of JNDI with the
same VM as the JBoss server does not incur any socket overhead. The configurable attributes of the Naming-
Service are really the configurable attributes of the JBossNS Main MBean. The setting of any attributes on the
NamingService MBean simply set the corresponding attributes on the Main MBean the NamingService con-
tains. When the NamingService is started, it starts the contained Main MBean to activate the JNDI naming ser-
vice.

In addition, the NamingService exposes the Naming interface operations through a JMX detyped invoke opera-
tion. This allows the naming service to be accessed via JMX adaptors for arbitrary protocols. We will look at an

Naming on JBoss

141

example of how HTTP can be used to access the naming service using the invoke operation later in this chapter.

The details of threads and the thread context class loader won't be explored here, but the JNDI tutorial provides
a concise discussion that is applicable. See ht-
tp://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html for the details.

When the Main MBean is started, it performs the following tasks:

• Instantiates an org.jnp.naming.NamingService instance and sets this as the local VM server instance. This
is used by any org.jnp.interfaces.NamingContext instances that are created within the JBoss server VM
to avoid RMI calls over TCP/IP.

• Exports the NamingServer instance's org.jnp.naming.interfaces.Naming RMI interface using the con-
figured RmiPort, ClientSocketFactory, ServerSocketFactoryattributes.

• Creates a socket that listens on the interface given by the BindAddress and Port attributes.

• Spawns a thread to accept connections on the socket.

3.2.1. The Naming InitialContext Factories

The JBoss JNDI provider currently supports three different InitialContext factory implementations. The
most commonly used factory is the org.jnp.interfaces.NamingContextFactory implementation. Its proper-
ties include:

• java.naming.factory.initial: The name of the environment property for specifying the initial context fact-
ory to use. The value of the property should be the fully qualified class name of the factory class that will
create an initial context. If it is not specified, a javax.naming.NoInitialContextException will be thrown
when an InitialContext object is created.

• java.naming.provider.url: The name of the environment property for specifying the location of the JBoss
JNDI service provider the client will use. The NamingContextFactory class uses this information to know
which JBossNS server to connect to. The value of the property should be a URL string. For JBossNS the
URL format is jnp://host:port/[jndi_path]. The jnp: portion of the URL is the protocol and refers to
the socket/RMI based protocol used by JBoss. The jndi_path portion of the URL is an option JNDI name
relative to the root context, for example, apps or apps/tmp. Everything but the host component is optional.
The following examples are equivalent because the default port value is 1099.

• jnp://www.jboss.org:1099/

• www.jboss.org:1099

• www.jboss.org

• java.naming.factory.url.pkgs: The name of the environment property for specifying the list of package
prefixes to use when loading in URL context factories. The value of the property should be a colon-sep-
arated list of package prefixes for the class name of the factory class that will create a URL context factory.
For the JBoss JNDI provider this must be org.jboss.naming:org.jnp.interfaces. This property is essen-
tial for locating the jnp: and java: URL context factories of the JBoss JNDI provider.

• jnp.socketFactory: The fully qualified class name of the javax.net.SocketFactory implementation to use
to create the bootstrap socket. The default value is org.jnp.interfaces.TimedSocketFactory. The Timed-

SocketFactory is a simple SocketFactory implementation that supports the specification of a connection
and read timeout. These two properties are specified by:

Naming on JBoss

142

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html
http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

• jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the connection
will block until the VM TCP/IP layer times out.

• jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is 0 which means
reads will block. This is the value passed to the Socket.setSoTimeout on the newly connected socket.

When a client creates an InitialContext with these JBossNS properties available, the
org.jnp.interfaces.NamingContextFactory object is used to create the Context instance that will be used in
subsequent operations. The NamingContextFactory is the JBossNS implementation of the
javax.naming.spi.InitialContextFactory interface. When the NamingContextFactory class is asked to cre-
ate a Context, it creates an org.jnp.interfaces.NamingContext instance with the InitialContext environ-
ment and name of the context in the global JNDI namespace. It is the NamingContext instance that actually per-
forms the task of connecting to the JBossNS server, and implements the Context interface. The Con-

text.PROVIDER_URL information from the environment indicates from which server to obtain a NamingServer

RMI reference.

The association of the NamingContext instance to a NamingServer instance is done in a lazy fashion on the first
Context operation that is performed. When a Context operation is performed and the NamingContext has no
NamingServer associated with it, it looks to see if its environment properties define a Context.PROVIDER_URL.
A Context.PROVIDER_URL defines the host and port of the JBossNS server the Context is to use. If there is a
provider URL, the NamingContext first checks to see if a Naming instance keyed by the host and port pair has
already been created by checking a NamingContext class static map. It simply uses the existing Naming instance
if one for the host port pair has already been obtained. If no Naming instance has been created for the given host
and port, the NamingContext connects to the host and port using a java.net.Socket, and retrieves a Naming

RMI stub from the server by reading a java.rmi.MarshalledObject from the socket and invoking its get meth-
od. The newly obtained Naming instance is cached in the NamingContext server map under the host and port
pair. If no provider URL was specified in the JNDI environment associated with the context, the NamingCon-

text simply uses the in VM Naming instance set by the Main MBean.

The NamingContext implementation of the Context interface delegates all operations to the Naming instance as-
sociated with the NamingContext. The NamingServer class that implements the Naming interface uses a
java.util.Hashtable as the Context store. There is one unique NamingServer instance for each distinct JNDI
Name for a given JBossNS server. There are zero or more transient NamingContext instances active at any giv-
en moment that refers to a NamingServer instance. The purpose of the NamingContext is to act as a Context to
the Naming interface adaptor that manages translation of the JNDI names passed to the NamingContext . Be-
cause a JNDI name can be relative or a URL, it needs to be converted into an absolute name in the context of
the JBossNS server to which it refers. This translation is a key function of the NamingContext.

3.2.1.1. Naming Discovery in Clustered Environments

When running in a clustered JBoss environment, you can choose not to specify a Context.PROVIDER_URL value
and let the client query the network for available naming services. This only works with JBoss servers running
with the all configuration, or an equivalent configuration that has
org.jboss.ha.framework.server.ClusterPartition and org.jboss.ha.jndi.HANamingService services
deployed. The discovery process consists of sending a multicast request packet to the discovery address/port
and waiting for any node to respond. The response is a HA-RMI version of the Naming interface. The following
InitialContext proerties affect the discovery configuration:

• jnp.partitionName: The cluster partition name discovery should be restricted to. If you are running in an
environment with multiple clusters, you may want to restrict the naming discovery to a particular cluster.
There is no default value, meaning that any cluster response will be accepted.

Naming on JBoss

143

• jnp.discoveryGroup: The multicast IP/address to which the discovery query is sent. The default is
230.0.0.4.

• jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.

• jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The default value
is 5000 (5 seconds).

• jnp.disableDiscovery: A flag indicating if the discovery process should be avoided. Discovery occurs
when either no Context.PROVIDER_URL is specified, or no valid naming service could be located among the
URLs specified. If the jnp.disableDiscovery flag is true, then discovery will not be attempted.

3.2.1.2. The HTTP InitialContext Factory Implementation

The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is a transparent
change as they continue to use the JNDI Context interface. Operations through the Context interface are trans-
lated into HTTP posts to a servlet that passes the request to the NamingService using its JMX invoke operation.
Advantages of using HTTP as the access protocol include better access through firewalls and proxies setup to
allow HTTP, as well as the ability to secure access to the JNDI service using standard servlet role based secur-
ity.

To access JNDI over HTTP you use the org.jboss.naming.HttpNamingContextFactory as the factory imple-
mentation. The complete set of support InitialContext environment properties for this factory are:

• java.naming.factory.initial: The name of the environment property for specifying the initial context fact-
ory, which must be org.jboss.naming.HttpNamingContextFactory.

• java.naming.provider.url (or Context.PROVIDER_URL): This must be set to the http URL of the JMX in-
voker servlet. It depends on the configuration of the http-invoker.sar and its contained WAR, but the de-
fault setup places the JMX invoker servlet under /invoker/JMXInvokerServlet. The full HTTP URL
would be the public URL of the JBoss servlet container plus /invoker/JMXInvokerServlet. Examples in-
clude:

• http://www.jboss.org:8080/invoker/JMXInvokerServlet

• http://www.jboss.org/invoker/JMXInvokerServlet

• https://www.jboss.org/invoker/JMXInvokerServlet

The first example accesses the servlet using the port 8080. The second uses the standard HTTP port 80, and
the third uses an SSL encrypted connection to the standard HTTPS port 443.

• java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL
context factories of the JBoss JNDI provider.

The JNDI Context implementation returned by the HttpNamingContextFactory is a proxy that delegates in-
vocations made on it to a bridge servlet which forwards the invocation to the NamingService through the JMX
bus and marshalls the reply back over HTTP. The proxy needs to know what the URL of the bridge servlet is in
order to operate. This value may have been bound on the server side if the JBoss web server has a well known
public interface. If the JBoss web server is sitting behind one or more firewalls or proxies, the proxy cannot
know what URL is required. In this case, the proxy will be associated with a system property value that must be
set in the client VM. For more information on the operation of JNDI over HTTP see Section 3.2.2.

3.2.1.3. The Login InitialContext Factory Implementation

Naming on JBoss

144

Historically JBoss has not supported providing login information via the IntialContext factory environment.
The reason being that JAAS provides a much more flexible framework. For simplicity and migration from oth-
er application server environment that do make use of this mechanism, the InitialContext factory implement-
ation that allows this. JAAS is still used under in the implementation, but there is no manifest use of the JAAS
interfaces in the client application.

The factory class that provides this capability is the
org.jboss.security.jndi.LoginInitialContextFactory. The complete set of support InitialContext en-
vironment properties for this factory are:

• java.naming.factory.initial: The name of the environment property for specifying the initial context fact-
ory, which must be org.jboss.security.jndi.LoginInitialContextFactory.

• java.naming.provider.url: This must be set to a NamingContextFactory provider URL. The LoginIn-

tialContext is really just a wrapper around the NamingContextFactory that adds a JAAS login to the ex-
isting NamingContextFactory behavior.

• java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL
context factories of the JBoss JNDI provider.

• java.naming.security.principal (or Context.SECURITY_PRINCIPAL): The principal to authenticate. This
may be either a java.security.Principal implementation or a string representing the name of a principal.

• java.naming.security.credentials (or Context.SECURITY_CREDENTIALS), The credentials that should be
used to authenticate the principal, e.g., password, session key, etc.

• java.naming.security.protocol: (Context.SECURITY_PROTOCOL) This gives the name of the JAAS login
module to use for the authentication of the principal and credentials.

3.2.2. Accessing JNDI over HTTP

In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for accessing its
JNDI naming service over HTTP. This capability is provided by http-invoker.sar. The structure of the http-

invoker.sar is:

http-invoker.sar
+- META-INF/jboss-service.xml
+- invoker.war
| +- WEB-INF/jboss-web.xml
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/InvokerServlet.class
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/NamingFactoryServlet.class
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/ReadOnlyAccessFilter.class
| +- WEB-INF/classes/roles.properties
| +- WEB-INF/classes/users.properties
| +- WEB-INF/web.xml
| +- META-INF/MANIFEST.MF
+- META-INF/MANIFEST.MF

The jboss-service.xml descriptor defines the HttpInvoker and HttpInvokerHA MBeans. These services
handle the routing of methods invocations that are sent via HTTP to the approriate target MBean on the JMX
bus.

The http-invoker.war web application contains servlets that handle the details of the HTTP transport. The
NamingFactoryServlet handles creation requests for the JBoss JNDI naming service javax.naming.Context

Naming on JBoss

145

implementation. The InvokerServlet handles invocations made by RMI/HTTP clients. The ReadOnlyAccess-

Filter allows one to secure the JNDI naming service while making a single JNDI context available for read-
only access by unauthenticated clients.

Figure 3.6. The HTTP invoker proxy/server structure for a JNDI Context

Before looking at the configurations let's look at the operation of the http-invoker services. Figure 3.6 shows
a logical view of the structure of a JBoss JNDI proxy and its relationship to the JBoss server side components
of the http-invoker. The proxy is obtained from the NamingFactoryServlet using an InitialContext with
the Context.INITIAL_CONTEXT_FACTORY property set to org.jboss.naming.HttpNamingContextFactory, and
the Context.PROVIDER_URL property set to the HTTP URL of the NamingFactoryServlet. The resulting proxy
is embedded in an org.jnp.interfaces.NamingContext instance that provides the Context interface imple-
mentation.

The proxy is an instance of org.jboss.invocation.http.interfaces.HttpInvokerProxy, and implements
the org.jnp.interfaces.Naming interface. Internally the HttpInvokerProxy contains an invoker that mar-
shalls the Naming interface method invocations to the InvokerServlet via HTTP posts. The InvokerServlet

translates these posts into JMX invocations to the NamingService, and returns the invocation response back to
the proxy in the HTTP post reponse.

There are several configuration values that need to be set to tie all of these components together and Figure 3.7
illustrates the relationship between configuration files and the corresponding components.

Naming on JBoss

146

Figure 3.7. The relationship between configuration files and JNDI/HTTP component

The http-invoker.sar/META-INF/jboss-service.xml descriptor defines the HttpProxyFactory that creates
the HttpInvokerProxy for the NamingService. The attributes that need to be configured for the HttpProxy-

Factory include:

• InvokerName: The JMX ObjectName of the NamingService defined in the conf/jboss-service.xml

descriptor. The standard setting used in the JBoss distributions is jboss:service=Naming.

• InvokerURL or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify the full HT-
TP URL to the InvokerServlet using the InvokerURL attribute, or you can specify the hostname independ-
ent parts of the URL and have the HttpProxyFactory fill them in. An example InvokerURL value would be
http://jbosshost1.dot.com:8080/invoker/JMXInvokerServlet. This can be broken down into:

• InvokerURLPrefix: the URL prefix prior to the hostname. Typically this will be http:// or https://
if SSL is to be used.

• InvokerURLSuffix: the URL suffix after the hostname. This will include the port number of the web
server as well as the deployed path to the InvokerServlet . For the example InvokerURL value the In-

vokerURLSuffix would be :8080/invoker/JMXInvokerServlet without the quotes. The port number is
determined by the web container service settings. The path to the InvokerServlet is specified in the
http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor.

• UseHostName: a flag indicating if the hostname should be used in place of the host IP address when
building the hostname portion of the full InvokerURL. If true, InetAd-

Naming on JBoss

147

dress.getLocalHost().getHostName method will be used. Otherwise, the InetAd-

dress.getLocalHost().getHostAddress() method is used.

• ExportedInterface: The org.jnp.interfaces.Naming interface the proxy will expose to clients. The actu-
al client of this proxy is the JBoss JNDI implementation NamingContext class, which JNDI client obtain
from InitialContext lookups when using the JBoss JNDI provider.

• JndiName: The name in JNDI under which the proxy is bound. This needs to be set to a blank/empty string
to indicate the interface should not be bound into JNDI. We can't use the JNDI to bootstrap itself. This is
the role of the NamingFactoryServlet.

The http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor defines the mappings of the NamingFact-

oryServlet and InvokerServet along with their initialzation parameters. The configuration of the Naming-

FactoryServlet relevant to JNDI/HTTP is the JNDIFactory entry which defines:

• A namingProxyMBean initialzation parameter that maps to the HttpProxyFactory MBean name. This is
used by the NamingFactoryServlet to obtain the Naming proxy which it will return in response to HTTP
posts. For the default http-invoker.sar/META-INF/jboss-service.xml settings the name
jboss:service=invoker,type=http,target=Naming.

• A proxy initialzation parameter that defines the name of the namingProxyMBean attribute to query for the
Naming proxy value. This defaults to an attribute name of Proxy.

• The servlet mapping for the JNDIFactory configuration. The default setting for the unsecured mapping is /

JNDIFactory/*. This is relative to the context root of the http-invoker.sar/invoker.war, which by de-
fault is the WAR name minus the .war suffix.

The configuration of the InvokerServlet relevant to JNDI/HTTP is the JMXInvokerServlet which defines:

• The servlet mapping of the InvokerServlet. The default setting for the unsecured mapping is /

JMXInvokerServlet/*. This is relative to the context root of the http-invoker.sar/invoker.war, which
by default is the WAR name minus the .war suffix.

3.2.3. Accessing JNDI over HTTPS

To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web container. The de-
tails of this are convered in the Integrating Servlet Containers for Tomcat. We will demonstrate the use of HT-
TPS with a simple example client that uses an HTTPS URL as the JNDI provider URL. We will provide an
SSL connector configuration for the example, so unless you are interested in the details of the SSL connector
setup, the example is self contained.

We also provide a configuration of the HttpProxyFactory setup to use an HTTPS URL. shows the section of
the http-invoker.sar jboss-service.xml descriptor that the example installs to provide this configuration.
All the has changed relative to the standard http configuration are the InvokerURLPrefix and InvokerURLSuf-

fix attributes, which setup an HTTPS URL using the 8443 port.

<!-- Expose the Naming service interface via HTTPS -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"

name="jboss:service=invoker,type=https,target=Naming">
<!-- The Naming service we are proxying -->
<attribute name="InvokerName">jboss:service=Naming</attribute>
<!-- Compose the invoker URL from the cluster node address -->
<attribute name="InvokerURLPrefix">https://</attribute>

Naming on JBoss

148

<attribute name="InvokerURLSuffix">:8443/invoker/JMXInvokerServlet </attribute>
<attribute name="UseHostName">true</attribute>
<attribute name="ExportedInterface">org.jnp.interfaces.Naming </attribute>
<attribute name="JndiName"/>
<attribute name="ClientInterceptors">

<interceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor </interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor </interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor </interceptor>

</interceptors>
</attribute>

</mbean>

At a minimum, a JNDI client using HTTPS requires setting up a https URL protocol handler. We will be using
the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE documentation does a good job of describing
what is necessary to use https, and the following steps were needed to configure the example client shown in
Example 3.16:

• A protocol handler for HTTPS URLs must be made available to Java. The JSSE release includes an HTTPS
handler in the com.sun.net.ssl.internal.www.protocol package. To enable the use of https URLs you
include this package in the standard URL protocol handler search property, java.protocol.handler.pkgs.
We set the java.protocol.handler.pkgs property in the Ant script.

• The JSSE security provider must be installed in order for SSL to work. This can be done either by installing
the JSSE jars as an extension package, or programatically. We use the programatic approach in the example
since this is less intrusive. Line 18 of the ExClient code demonstrates how this is done.

• The JNDI provider URL must use HTTPS as the protocol. Lines 24-25 of the ExClient code specify an
HTTP/SSL connection to the localhost on port 8443. The hostname and port are defined by the web con-
tainer SSL connector.

• The validation of the HHTPS URL hostname against the server certificate must be disabled. By default, the
JSSE https protocol handler employs a strict validation of the hostname portion of the HTTPS URL against
the common name of the server certificate. This is the same check done by web browsers when you connect
to secured web site. We are using a self-signed server certificate that uses a common name of "Chapter8
SSL Example" rather than a particular hostname, and this is likely to be common in development environ-
ments or intranets. The JBoss HttpInvokerProxy will override the default hostname checking if a
org.jboss.security.ignoreHttpsHost system property exists and has a value of true. We set the
org.jboss.security.ignoreHttpsHost property to true in the Ant script.

Example 3.16. A JNDI client that uses HTTPS as the transport

package org.jboss.chap3.ex1;

import java.security.Security;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;

/**
* A simple JNDI client that uses HTTPS as the transport.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.8 $
*/

public class ExClient
{

public static void main(String args[]) throws Exception

Naming on JBoss

149

{
// Install the Sun JSSE provider since we may not have JSSE installed
Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());
System.out.println("Added JSSE security provider");

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"https://localhost:8443/invoker/JNDIFactory");
Context ctx = new InitialContext(env);
System.out.println("Created InitialContext, env="+env);
Object data = ctx.lookup("jmx/rmi/RMIAdaptor");
System.out.println("lookup(jmx/rmi/RMIAdaptor): "+data);

}
}

To test the client, first build the chapter 3 example to create the chap3 configuration fileset.

[nr@toki examples]$ ant -Dchap=chap3 config
Buildfile: build.xml

validate:
[java] ImplementationTitle: JBoss [WonderLand]
[java] ImplementationVendor: JBoss.org
[java] ImplementationVersion: 3.2.6RC2 (build: CVSTag=Branch_3_2 date=200409270100)
[java] SpecificationTitle: JBoss
[java] SpecificationVendor: JBoss (http://www.jboss.org/)
[java] SpecificationVersion: 3.2.6
[java] JBoss version is: 3.2.6

fail_if_not_valid:

init:
[echo] Using jboss.dist=/tmp/jboss-3.2.6

compile-src:

compile:

config:

config:
[echo] Preparing chap3 configuration fileset
[mkdir] Created dir: /tmp/jboss-3.2.6/server/chap3
[copy] Copying 221 files to /tmp/jboss-3.2.6/server/chap3
[copy] Copied 1 empty directory to /tmp/jboss-3.2.6/server/chap3
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/chap3/conf
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/chap3/conf
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/chap3/deploy/jbossweb-tomcat50.sar
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/chap3/deploy/http-invoker.sar/META

-INF
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/chap3/deploy/http-invoker.sar/invo

ker.war/WEB-INF
BUILD SUCCESSFUL
Total time: 6 seconds

Next, start the JBoss server using the chap3 configuration fileset:

[nr@toki bin]$ sh run.sh -c chap3
===

JBoss Bootstrap Environment

JBOSS_HOME: /tmp/jboss-3.2.6
...

Naming on JBoss

150

And finally, run the ExClient using:

[nr@toki examples]$ ant -Dchap=chap3 -Dex=1 run-example
Buildfile: build.xml

validate:
...

run-example:

run-example1:
[java] JSSE already available
[java] Created InitialContext, env={java.naming.provider.url=https://localhost:8443/

invoker/JNDIFactorySSL, java.naming.factory.initial=org.jboss.naming.HttpNamingContextFac
tory}

[java] lookup(jmx/rmi/RMIAdaptor): org.jboss.invocation.jrmp.interfaces.JRMPInvokerP
roxy@873b9f
BUILD SUCCESSFUL
Total time: 6 seconds

3.2.4. Securing Access to JNDI over HTTP

One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI InitialContext fact-
ory as well as the naming operations using standard web declarative security. This is possible because the serv-
er side handling of the JNDI/HTTP transport is implemented with two servlets. These servlets are included in
the http-invoker.sar/invoker.war directory found in the default and all configuration deploy directories
as shown previously. To enable secured access to JNDI you need to edit the invoker.war/WEB-INF/web.xml

descriptor and remove all unsecured servlet mappings. For example, the web.xml descriptor shown in Ex-
ample 3.17 only allows access to the invoker.war servlets if the user has been authenticated and has a role of
HttpInvoker.

Example 3.17. An example web.xml descriptor for secured access to the JNDI servlets

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<!-- ### Servlets -->
<servlet>

<servlet-name>JMXInvokerServlet</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.InvokerServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet> <servlet>
<servlet-name>JNDIFactory</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.NamingFactoryServlet
</servlet-class>
<init-param>

<param-name>namingProxyMBean</param-name>
<param-value>jboss:service=invoker,type=http,target=Naming</param-value>

</init-param>
<init-param>

<param-name>proxyAttribute</param-name>
<param-value>Proxy</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
<!-- ### Servlet Mappings -->
<servlet-mapping>

<servlet-name>JNDIFactory</servlet-name>

Naming on JBoss

151

<url-pattern>/restricted/JNDIFactory/*</url-pattern>
</servlet-mapping>
<servlet-mapping>

<servlet-name>JMXInvokerServlet</servlet-name>
<url-pattern>/restricted/JMXInvokerServlet/*</url-pattern>

</servlet-mapping> <security-constraint>
<web-resource-collection>

<web-resource-name>HttpInvokers</web-resource-name>
<description>An example security config that only allows users with

the role HttpInvoker to access the HTTP invoker servlets </description>
<url-pattern>/restricted/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>HttpInvoker</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>JBoss HTTP Invoker</realm-name>

</login-config> <security-role>
<role-name>HttpInvoker</role-name>

</security-role>
</web-app>

The web.xml descriptor only defines which sevlets are secured, and which roles are allowed to access the se-
cured servlets. You must additionally define the security domain that will handle the authentication and author-
ization for the war. This is done through the jboss-web.xml descriptor, and an example that uses the http-

invoker security domain is given below.

<jboss-web>
<security-domain>java:/jaas/http-invoker</security-domain>

</jboss-web>

The security-domain element defines the name of the security domain that will be used for the JAAS login
module configuration used for authentication and authorization. See Section 8.1.6 for additional details on the
meaning and configuration of the security domain name.

3.2.5. Securing Access to JNDI with a Read-Only Unsecured Context

Another feature available for the JNDI/HTTP naming service is the ability to define a context that can be ac-
cessed by unauthenticated users in read-only mode. This can be important for services used by the authentica-
tion layer. For example, the SRPLoginModule needs to lookup the SRP server interface used to perform authen-
tication. To enable this, some additional web.xml descriptor settings are needed. The following diagram shows
the the additional web.xml descriptor elements needed for read-only access.

<web-app>
<filter>

<filter-name>ReadOnlyAccessFilter</filter-name>
<filter-class>org.jboss.invocation.http.servlet.ReadOnlyAccessFilter</filter-class>
<init-param>

<param-name>readOnlyContext</param-name>
<param-value>readonly-context</param-value>

</init-param>
<init-param>

<param-name>invokerName</param-name>
<param-value>jboss:service=Naming</param-value>

</init-param>
</filter>
<filter-mapping>

<filter-name>ReadOnlyAccessFilter</filter-name>

Naming on JBoss

152

<url-pattern>/readonly/*</url-pattern>
</filter-mapping>
<servlet>

<servlet-name>ReadOnlyJNDIFactory</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.NamingFactoryServlet
</servlet-class>
<init-param>

<param-name>namingProxyMBean</param-name>
<param-value>

jboss:service=invoker,type=http,target=Naming,readonly=true
</param-value>

</init-param>
<init-param>

<param-name>proxyAttribute</param-name>
<param-value>Proxy</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
<!-- A mapping for the JMXInvokerServlet that only allows invocations

of lookups under a read-only context. This is enforced by the
ReadOnlyAccessFilter

-->
<servlet-mapping>

<servlet-name>JMXInvokerServlet</servlet-name>
<url-pattern>/readonly/JMXInvokerServlet/*</url-pattern>

</servlet-mapping>
</web-app>

With these settings, one may perform Context.lookup operations on the readonly-context or its subcontexts,
but no other operations on this context. Also, no operations of any kind may be performed on other contexts.
Here is a code fragment for a lookup of the readonly-context/data binding:

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"http://localhost:8080/invoker/ReadOnlyJNDIFactory");

Context ctx2 = new InitialContext(env);
Object data = ctx2.lookup("readonly-context/data");

3.2.6. Additional Naming MBeans

In addition to the NamingService MBean that configures an embedded JBossNS server within JBoss, there are
three additional MBean services related to naming that ship with JBoss. They are the ExternalContext, Namin-
gAlias, and JNDIView.

3.2.6.1. org.jboss.naming.ExternalContext MBean

The ExternalContext MBean allows you to federate external JNDI contexts into the JBoss server JNDI
namespace. The term external refers to any naming service external to the JBossNS naming service running in-
side of the JBoss server VM. You can incorporate LDAP servers, file systems, DNS servers, and so on, even if
the JNDI provider root context is not serializable. The federation can be made available to remote clients if the
naming service supports remote access.

To incorporate an external JNDI naming service, you have to add a configuration of the ExternalContext

MBean service to the jboss-service.xml configuration file. The configurable attributes of the ExternalCon-

text service are as follows:

Naming on JBoss

153

• JndiName:The JNDI name under which the external context is to be bound.

• RemoteAccessA boolean flag indicating if the external InitialContext should be bound using a Serial-

izable form that allows a remote client to create the external InitialContext . When a remote client looks
up the external context via the JBoss JNDI InitialContext, they effectively create an instance of the ex-
ternal InitialContext using the same env properties passed to the ExternalContext MBean. This will
only work if the client can do a new InitialContext(env) remotely. This requires that the Con-

text.PROVIDER_URL value of env is resolvable in the remote VM that is accessing the context. This should
work for the LDAP example. For the file system example this most likely won't work unless the file system
path refers to a common network path. If this property is not given it defaults to false.

• CacheContext: The cacheContext flag. When set to true, the external Context is only created when the
MBean is started and then stored as an in memory object until the MBean is stopped. If cacheContext is set
to false, the external Context is created on each lookup using the MBean properties and InitialContext
class. When the uncached Context is looked up by a client, the client should invoke close() on the Context
to prevent resource leaks.

• InitialContext: The fully qualified class name of the InitialContext implementation to use. Must be one
of: javax.naming.InitialContext, javax.naming.directory.InitialDirContext or
javax.naming.ldap.InitialLdapContext. In the case of the InitialLdapContext a null Controls array is
used. The default is javax.naming.InitialContex.

• Properties: Set the jndi.properties information for the external InitialContext. This is either a URL,
string or a classpath resource name. Examples are as follows:

• file:///config/myldap.properties
• http://config.mycompany.com/myldap.properties
• /conf/myldap.properties
• myldap.properties

The MBean definition below shows two configurations: one for an LDAP server, and the other for a local file
system directory.

<!-- Bind a remote LDAP server -->
<mbean code="org.jboss.naming.ExternalContext"

name="jboss.jndi:service=ExternalContext,jndiName=external/ldap/jboss">
<attribute name="JndiName">external/ldap/jboss</attribute>
<attribute name="Properties">jboss.ldap</attribute>
<attribute name="InitialContext"> javax.naming.ldap.InitialLdapContext </attribute>
<attribute name="RemoteAccess">true</attribute>

</mbean>

<!-- Bind the /usr/local file system directory -->
<mbean code="org.jboss.naming.ExternalContext"

name="jboss.jndi:service=ExternalContext,jndiName=external/fs/usr/local">
<attribute name="JndiName">external/fs/usr/local</attribute>
<attribute name="Properties">local.props</attribute>
<attribute name="InitialContext">javax.naming.IntialContext</attribute>

</mbean>

The first configuration describes binding an external LDAP context into the JBoss JNDI namespace under the
name external/ldap/jboss. An example jboss.ldap properties file is as follows:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://ldaphost.jboss.org:389/o=jboss.org
java.naming.security.principal=cn=Directory Manager
java.naming.security.authentication=simple
java.naming.security.credentials=secret

Naming on JBoss

154

With this configuration, you can access the external LDAP context located at
ldap://ldaphost.jboss.org:389/o=jboss.org from within the JBoss VM using the following code frag-
ment:

InitialContext iniCtx = new InitialContext();
LdapContext ldapCtx = iniCtx.lookup("external/ldap/jboss");

Using the same code fragment outside of the JBoss server VM will work in this case because the RemoteAccess

property was set to true. If it were set to false, it would not work because the remote client would receive a
Reference object with an ObjectFactory that would not be able to recreate the external IntialContext

The second configuration describes binding a local file system directory /usr/local into the JBoss JNDI
namespace under the name external/fs/usr/local. An example local.props properties file is:

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:///usr/local

With this configuration, you can access the external file system context located at file:///usr/local from
within the JBoss VM using the following code fragment:

InitialContext iniCtx = new InitialContext();
Context ldapCtx = iniCtx.lookup("external/fs/usr/local");

3.2.6.2. The org.jboss.naming.NamingAlias MBean

The NamingAlias MBean is a simple utility service that allows you to create an alias in the form of a JNDI
javax.naming.LinkRef from one JNDI name to another. This is similar to a symbolic link in the UNIX file
system. To an alias you add a configuration of the NamingAlias MBean to the jboss-service.xml configura-
tion file. The configurable attributes of the NamingAlias service are as follows:

• FromName: The location where the LinkRef is bound under JNDI.

• ToName: The to name of the alias. This is the target name to which the LinkRef refers. The name is a
URL, or a name to be resolved relative to the InitialContext, or if the first character of the name is., the
name is relative to the context in which the link is bound.

The following example provides a mapping of the JNDI name QueueConnectionFactory to the name Connec-

tionFactory.

<mbean code="org.jboss.naming.NamingAlias"
name="jboss.mq:service=NamingAlias,fromName=QueueConnectionFactory">

<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName">QueueConnectionFactory</attribute>

</mbean>

3.2.6.3. The org.jboss.naming.JNDIView MBean

The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the JBoss server using
the JMX agent view interface. To view the JBoss JNDI namespace using the JNDIView MBean, you connect to
the JMX Agent View using the http interface. The default settings put this at ht-

tp://localhost:8080/jmx-console/. On this page you will see a section that lists the registered MBeans
sortyed by domain. It should look something like that shown in Figure 3.8.

Naming on JBoss

155

Figure 3.8. The JMX Console view of the configured JBoss MBeans

Selecting the JNDIView link takes you to the JNDIView MBean view, which will have a list of the JNDIView
MBean operations. This view should look similar to that shown in Figure 3.9.

Naming on JBoss

156

Figure 3.9. The JMX Console view of the JNDIView MBean

The list operation dumps out the JBoss server JNDI namespace as an html page using a simple text view. As an
example, invoking the list operation produces the view shown in Figure 3.10.

Naming on JBoss

157

Figure 3.10. The JMX Console view of the JNDIView list operation output

Naming on JBoss

158

4
Transactions on JBoss

The JTA Transaction Service

This chapter discusses transaction management in JBoss and the JBossTX architecture. The JBossTX architec-
ture allows for any Java Transaction API (JTA) transaction manager implementation to be used. JBossTX in-
cludes a fast in-VM implementation of a JTA compatible transaction manager that is used as the default trans-
action manager. We will first provide an overview of the key transaction concepts and notions in the JTA to
provide sufficient background for the JBossTX architecture discussion. We will then discuss the interfaces that
make up the JBossTX architecture and conclude with a discussion of the MBeans available for integration of
alternate transaction managers.

4.1. Transaction/JTA Overview

For the purpose of this discussion, we can define a transaction as a unit of work containing one or more opera-
tions involving one or more shared resources having ACID properties. ACID is an acronym for atomicity, con-
sistency, isolation and durability, the four important properties of transactions. The meanings of these terms is:

• Atomicity: A transaction must be atomic. This means that either all the work done in the transaction must
be performed, or none of it must be performed. Doing part of a transaction is not allowed.

• Consistency: When a transaction is completed, the system must be in a stable and consistent condition.

• Isolation: Different transactions must be isolated from each other. This means that the partial work done in
one transaction is not visible to other transactions until the transaction is committed, and that each process
in a multi-user system can be programmed as if it was the only process accessing the system.

• Durability: The changes made during a transaction are made persistent when it is committed. When a
transaction is committed, its changes will not be lost, even if the server crashes afterwards.

To illustrate these concepts, consider a simple banking account application. The banking application has a data-
base with a number of accounts. The sum of the amounts of all accounts must always be 0. An amount of
money M is moved from account A to account B by subtracting M from account A and adding M to account B.
This operation must be done in a transaction, and all four ACID properties are important.

The atomicity property means that both the withdrawal and deposit is performed as an indivisible unit. If, for
some reason, both cannot be done nothing will be done.

The consistency property means that after the transaction, the sum of the amounts of all accounts must still be
0.

The isolation property is important when more than one bank clerk uses the system at the same time. A with-
drawal or deposit could be implemented as a three-step process: First the amount of the account is read from
the database; then something is subtracted from or added to the amount read from the database; and at last the
new amount is written to the database. Without transaction isolation several bad things could happen. For ex-

159

ample, if two processes read the amount of account A at the same time, and each independently added or sub-
tracted something before writing the new amount to the database, the first change would be incorrectly over-
written by the last.

The durability property is also important. If a money transfer transaction is committed, the bank must trust that
some subsequent failure cannot undo the money transfer.

4.1.1. Pessimistic and optimistic locking

Transactional isolation is usually implemented by locking whatever is accessed in a transaction. There are two
different approaches to transactional locking: Pessimistic locking and optimistic locking.

The disadvantage of pessimistic locking is that a resource is locked from the time it is first accessed in a trans-
action until the transaction is finished, making it inaccessible to other transactions during that time. If most
transactions simply look at the resource and never change it, an exclusive lock may be overkill as it may cause
lock contention, and optimistic locking may be a better approach.With pessimistic locking, locks are applied in
a fail-safe way. In the banking application example, an account is locked as soon as it is accessed in a transac-
tion. Attempts to use the account in other transactions while it is locked will either result in the other process
being delayed until the account lock is released, or that the process transaction will be rolled back. The lock ex-
ists until the transaction has either been committed or rolled back.

With optimistic locking, a resource is not actually locked when it is first is accessed by a transaction. Instead,
the state of the resource at the time when it would have been locked with the pessimistic locking approach is
saved. Other transactions are able to concurrently access to the resource and the possibility of conflicting
changes is possible. At commit time, when the resource is about to be updated in persistent storage, the state of
the resource is read from storage again and compared to the state that was saved when the resource was first ac-
cessed in the transaction. If the two states differ, a conflicting update was made, and the transaction will be
rolled back.

In the banking application example, the amount of an account is saved when the account is first accessed in a
transaction. If the transaction changes the account amount, the amount is read from the store again just before
the amount is about to be updated. If the amount has changed since the transaction began, the transaction will
fail itself, otherwise the new amount is written to persistent storage.

4.1.2. The components of a distributed transaction

There are a number of participants in a distributed transaction. These include:

• Transaction Manager: This component is distributed across the transactional system. It manages and co-
ordinates the work involved in the transaction. The transaction manager is exposed by the
javax.transaction.TransactionManager interface in JTA.

• Transaction Context: A transaction context identifies a particular transaction. In JTA the corresponding
interface is javax.transaction.Transaction.

• Transactional Client: A transactional client can invoke operations on one or more transactional objects in
a single transaction. The transactional client that started the transaction is called the transaction originator.
A transaction client is either an explicit or implicit user of JTA interfaces and has no interface representa-
tion in the JTA.

• Transactional Object: A transactional object is an object whose behavior is affected by operations per-
formed on it within a transactional context. A transactional object can also be a transactional client. Most

Transactions on JBoss

160

Enterprise Java Beans are transactional objects.

• Recoverable Resource: A recoverable resource is a transactional object whose state is saved to stable stor-
age if the transaction is committed, and whose state can be reset to what it was at the beginning of the trans-
action if the transaction is rolled back. At commit time, the transaction manager uses the two-phase XA
protocol when communicating with the recoverable resource to ensure transactional integrity when more
than one recoverable resource is involved in the transaction being committed. Transactional databases and
message brokers like JBossMQ are examples of recoverable resources. A recoverable resource is represen-
ted using the javax.transaction.xa.XAResource interface in JTA.

4.1.3. The two-phase XA protocol

When a transaction is about to be committed, it is the responsibility of the transaction manager to ensure that
either all of it is committed, or that all of is rolled back. If only a single recoverable resource is involved in the
transaction, the task of the transaction manager is simple: It just has to tell the resource to commit the changes
to stable storage.

When more than one recoverable resource is involved in the transaction, management of the commit gets more
complicated. Simply asking each of the recoverable resources to commit changes to stable storage is not
enough to maintain the atomic property of the transaction. The reason for this is that if one recoverable resource
has committed and another fails to commit, part of the transaction would be committed and the other part rolled
back.

To get around this problem, the two-phase XA protocol is used. The XA protocol involves an extra prepare
phase before the actual commit phase. Before asking any of the recoverable resources to commit the changes,
the transaction manager asks all the recoverable resources to prepare to commit. When a recoverable resource
indicates it is prepared to commit the transaction, it has ensured that it can commit the transaction. The resource
is still able to rollback the transaction if necessary as well.

So the first phase consists of the transaction manager asking all the recoverable resources to prepare to commit.
If any of the recoverable resources fails to prepare, the transaction will be rolled back. But if all recoverable re-
sources indicate they were able to prepare to commit, the second phase of the XA protocol begins. This consists
of the transaction manager asking all the recoverable resources to commit the transaction. Because all the re-
coverable resources have indicated they are prepared, this step cannot fail.

4.1.4. Heuristic exceptions

In a distributed environment communications failures can happen. If communication between the transaction
manager and a recoverable resource is not possible for an extended period of time, the recoverable resource
may decide to unilaterally commit or rollback changes done in the context of a transaction. Such a decision is
called a heuristic decision. It is one of the worst errors that may happen in a transaction system, as it can lead to
parts of the transaction being committed while other parts are rolled back, thus violating the atomicity property
of transaction and possibly leading to data integrity corruption.

Because of the dangers of heuristic exceptions, a recoverable resource that makes a heuristic decision is re-
quired to maintain all information about the decision in stable storage until the transaction manager tells it to
forget about the heuristic decision. The actual data about the heuristic decision that is saved in stable storage
depends on the type of recoverable resource and is not standardized. The idea is that a system manager can look
at the data, and possibly edit the resource to correct any data integrity problems.

There are several different kinds of heuristic exceptions defined by the JTA. The
javax.transaction.HeuristicCommitException is thrown when a recoverable resource is asked to rollback

Transactions on JBoss

161

to report that a heuristic decision was made and that all relevant updates have been committed. On the opposite
end is the javax.transaction.HeuristicRollbackException, which is thrown by a recoverable resource
when it is asked to commit to indicate that a heuristic decision was made and that all relevant updates have
been rolled back.

The javax.transaction.HeuristicMixedException is the worst heuristic exception. It is thrown to indicate
that parts of the transaction were committed, while other parts were rolled back. The transaction manager
throws this exception when some recoverable resources did a heuristic commit, while other recoverable re-
sources did a heuristic rollback.

4.1.5. Transaction IDs and branches

In JTA, the identity of transactions is encapsulated in objects implementing the javax.transaction.xa.Xid in-
terface. The transaction ID is an aggregate of three parts:

• The format identifier indicates the transaction family and tells how the other two parts should be inter-
preted.

• The global transaction id identified the global transaction within the transaction family.

• The branch qualifier denotes a particular branch of the global transaction.

Transaction branches are used to identify different parts of the same global transaction. Whenever the transac-
tion manager involves a new recoverable resource in a transaction it creates a new transaction branch.

4.2. JBoss Transaction Internals

The JBoss application server is written to be independent of the actual transaction manager used. JBoss uses the
JTA javax.transaction.TransactionManager interface as its view of the server transaction manager. Thus,
JBoss may use any transaction manager which implements the JTA TransactionManager interface. Whenever
a transaction manager is used it is obtained from the well-known JNDI location, java:/TransactionManager.
This is the globally available access point for the server transaction manager.

If transaction contexts are to be propagated with RMI/JRMP calls, the transaction manager must also imple-
ment two simple interfaces for the import and export of transaction propagation contexts (TPCs). The interfaces
are org.jboss.tm.TransactionPropagationContextImporter, and
org.jboss.tm.TransactionPropagationContextFactory.

Being independent of the actual transaction manager used also means that JBoss does not specify the format of
type of the transaction propagation contexts used. In JBoss, a TPC is of type Object, and the only requirement
is that the TPC must implementation the java.io.Serializable interface.

When using the RMI/JRMP protocol for remote calls, the TPC is carried as a field in the
org.jboss.ejb.plugins.jrmp.client.RemoteMethodInvocation class that is used to forward remote method
invocation requests.

4.2.1. Adapting a Transaction Manager to JBoss

A transaction manager has to implement the Java Transaction API to be easily integrated with JBoss. As almost
everything in JBoss, the transaction manager is managed as an MBean. Like all JBoss services, it should imple-
ment org.jboss.system.ServiceMBean to ensure proper life-cycle management.

Transactions on JBoss

162

The primary requirement of the transaction manager service on startup is that it binds its implementation of the
three required interfaces into JNDI. These interfaces and their JNDI locations are:

• The javax.transaction.TransactionManager interface is used by the application server to manage trans-
actions on behalf of the transactional objects that use container managed transactions. It must be bound un-
der the JNDI name java:/TransactionManager.

• The transaction propagation context factory interface
org.jboss.tm.TransactionPropagationContextFactory is called by JBoss whenever a transaction
propagation context is needed for for transporting a transaction with a remote method call. It must be bound
under the JNDI name java:/TransactionPropagationContextImporter.

• The transaction propagation context importer interface
org.jboss.tm.TransactionPropagationContextImporter is called by JBoss whenever a transaction
propagation context from an incoming remote method invocation has to be converted to a transaction that
can be used within the receiving JBoss server VM.

Establishing these JNDI bindings is all the transaction manager service needs to do to install its implementation
as the JBoss server transaction manager.

4.2.2. The Default Transaction Manager

JBoss is by default configured to use the fast in-VM transaction manager. This transaction manager is very fast,
but does have two limitations.

• It does not do transactional logging, and is thus incapable of automated recovery after a server crash.

• While it does support propagating transaction contexts with remote calls, it does not support propagating
transaction contexts to other virtual machines, so all transactional work must be done in the same virtual
machine as the JBoss server.

The corresponding default transaction manager MBean service is the
org.jboss.tm.TransactionManagerService MBean. It has two configurable attributes:

• TransactionTimeout: The default transaction timeout in seconds. The default value is 300 seconds or 5
minutes.

• XidFactory: The JMX ObjectName of the MBean service that provides the
org.jboss.tm.XidFactoryMBean implementation. The XidFactoryMBean interface is used to create
javax.transaction.xa.Xid instances. This is a workaround for XA JDBC drivers that only work with
their own Xid implementation. Examples of such drivers are the older Oracle XA drivers. If not specified a
JBoss implementation of the Xid interface is used.

4.2.2.1. org.jboss.tm.XidFactory

The XidFactory MBean is a factory for javax.transaction.xa.Xid instances in the form of
org.jboss.tm.XidImpl. The XidFactory allows for customization of the XidImpl that it constructs through the
following attributes:

• BaseGlobalId: This is used for building globally unique transaction identifiers. This must be set individu-
ally if multiple JBoss instances are running on the same machine. The default value is the host name of the

Transactions on JBoss

163

JBoss server, followed by a slash.

• GlobalIdNumber: A long value used as initial transaction id. The default is 0.

• Pad: The pad value determines whether the byte[] returned by the Xid getGlobalTransactionId and get-

BranchQualifier methods should be equal to maximum 64 byte length or a variable value <= 64. Some re-
source managers (Oracle for example) require ids that are max length in size.

4.2.3. UserTransaction Support

The JTA javax.transaction.UserTransaction interface allows applications to explicitly control transactions.
For enterprise session beans that manage transaction themselves (BMT), a UserTransaction can be obtained
by calling the getUserTransaction method on the bean context object, javax.ejb.SessionContext.

Note: For BMT beans, do not obtain the UserTransaction interface using a JNDI lookup. Doing this violates
the EJB specification, and the returned UserTransaction object does not have the hooks the EJB container needs
to make important checks.

To use the UserTransaction interface in other places, the
org.jboss.tm.usertx.server.ClientUserTransactionService MBean must be configured and started. This
MBean publishes a UserTransaction implementation under the JNDI name UserTransaction. This MBean is
configured by default in the standard JBoss distributions and has no configurable attributes.

When the UserTransaction is obtained with a JNDI lookup from a stand-alone client (a client operating in a
virtual machine than the server's, for example), a very simple UserTransaction suitable for thin clients is re-
turned. This UserTransaction implementation only controls the transactions on the server the UserTransac-

tion object was obtained from. Local transactional work done in the client is not done within the transactions
started by this UserTransaction object.

When a UserTransaction object is obtained by looking up JNDI name UserTransaction in the same virtual
machine as JBoss, a simple interface to the JTA TransactionManager is returned. This is suitable for web com-
ponents running in web containers embedded in JBoss. When components are deployed in an embedded web
server, the deployer will make a JNDI link from the standard java:comp/UserTransaction ENC name to the
global UserTransaction binding so that the web components can lookup the UserTranaction instance under
JNDI name as specified by the J2EE.

Transactions on JBoss

164

5
EJBs on JBoss

The EJB Container Configuration and Architecture

The JBoss EJB container architecture is a fourth generation design that emphasizes a modular plug-in approach.
All key aspects of the EJB container may be replaced by custom versions of a plug-in and/or an interceptor by a
developer. This approach allows for fine tuned customization of the EJB container behavior to optimally suite
your needs. Most of the EJB container behavior is configurable through the EJB JAR META-INF/jboss.xml

descriptor and the default server-wide equivalent standardjboss.xml descriptor. We will look at various con-
figuration capabilities throughout this chapter as we explore the container architecture.

5.1. The EJB Client Side View

We will begin our tour of the EJB container by looking at the client view of an EJB through the home and re-
mote proxies. It is the responsibility of the container provider to generate the javax.ejb.EJBHome and
javax.ejb.EJBObject for an EJB implementation. A client never references an EJB bean instance directly, but
rather references the EJBHome which implements the bean home interface, and the EJBObject which implements
the bean remote interface. Figure 5.1 shows the composition of an EJB home proxy and its relation to the EJB
deployment.

Figure 5.1. The composition of an EJBHome proxy in JBoss.

165

The numbered items in the figure are:

1. The EJBDeployer (org.jboss.ejb.EJBDeployer) is invoked to deploy an EJB JAR. An EJBModule

(org.jboss.ejb.EJBModule) is created to encapsulate the deployment metadata.

2. The create phase of the EJBModule life cycle creates an EJBProxyFactory

(org.jboss.ejb.EJBProxyFactory) that manages the creation of EJB home and remote interface proxies
based on the EJBModuleinvoker-proxy-bindings metadata. There can be multiple proxy factories associ-
ated with an EJB and we will look at how this is defined shortly.

3. The ProxyFactory constructs the logical proxies and binds the homes into JNDI. A logical proxy is com-
posed of a dynamic Proxy (java.lang.reflect.Proxy), the home interfaces of the EJB that the proxy ex-
poses, the ProxyHandler (java.lang.reflect.InvocationHandler) implementation in the form of the
ClientContainer (org.jboss.proxy.ClientContainer), and the client side interceptors.

4. The proxy created by the EJBProxyFactory is a JDK 1.3+ dynamic proxy. It is a serializable object that
proxies the EJB home and remote interfaces as defined in the EJBModule metadata. The proxy translates
requests made through the strongly typed EJB interfaces into a detyped invocation using the ClientCon-

tainer handler associated with the proxy. It is the dynamic proxy instance that is bound into JNDI as the
EJB home interface that clients lookup. When a client does a lookup of an EJB home, the home proxy is
transported into the client VM along with the ClientContainer and its interceptors. The use of dynamic
proxies avoids the EJB specific compilation step required by many other EJB containers.

5. The EJB home interface is declared in the ejb-jar.xml descriptor and available from the EJBModule
metadata. A key property of dynamic proxies is that they are seen to implement the interfaces they expose.
This is true in the sense of Java's strong type system. A proxy can be cast to any of the home interfaces
and reflection on the proxy provides the full details of the interfaces it proxies.

6. The proxy delegates calls made through any of its interfaces to the ClientContainer handler. The single
method required of the handler is: public Object invoke(Object proxy, Method m, Object[] args)

throws Throwable. The EJBProxyFactory creates a ClientContainer and assigns this as the ProxyHand-

ler. The ClientContainer's state consists of an InvocationContext

(org.jboss.invocation.InvocationContext) and a chain of interceptors
(org.jboss.proxy.Interceptor). The InvocationContext contains:

• the JMX ObjectName of the EJB container MBean the Proxy is associated with
• the javax.ejb.EJBMetaData for the EJB
• the JNDI name of the EJB home interface
• the transport specific invoker (org.jboss.invocation.Invoker)

The interceptor chain consists of the functional units that make up the EJB home or remote interface beha-
vior. This is a configurable aspect of an EJB as we will see when we discuss the jboss.xml descriptor, and
the interceptor makeup is contained in the EJBModule metadata. Interceptors
(org.jboss.proxy.Interceptor) handle the different EJB types, security, transactions and transport. You
can add your own interceptors as well.

7. The transport specific invoker associated with the proxy has an association to the server side detached in-
voker that handles the transport details of the EJB method invocation. The detached invoker is a JBoss
server side component.

The configuration of the client side interceptors is done using the jboss.xml client-interceptors element.
Figure 5.2 shows the subset of the jboss.xml DTD for the client interceptors. When the ClientContainer in-
voke method is called it creates an untyped Invocation (org.jboss.invocation.Invocation) to encapsulate

EJBs on JBoss

166

request. This is then passed through the interceptor chain. The last interceptor in the chain will be the transport
handler that knows how to send the request to the server and obtain the reply, taking care of the transport spe-
cific details.

Figure 5.2. The jboss.xml descriptor client side interceptor configuration elements.

As an example of the client interceptor configuration usage, consider the default stateless session bean config-
uration found in the server/default/standardjboss.xml descriptor. Example 5.1 shows the stateless-

rmi-invoker client interceptors configuration referenced by the Standard Stateless SessionBean.

Example 5.1. The client-interceptors from the Standard Stateless SessionBean configuration.

<invoker-proxy-bindings>
<invoker-proxy-binding>

<name>stateless-rmi-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>
<!-- ... -->
<invoker-proxy-bindings>

<container-configuration>
<container-name>Standard Stateless SessionBean</container-name>
<call-logging>false</call-logging>

EJBs on JBoss

167

<invoker-proxy-binding-name>stateless-rmi-invoker</invoker-proxy-binding-name>
<!-- ... -->

</container-configuration>
</invoker-proxy-bindings>

</invoker-proxy-bindings>

This is the client interceptor configuration for stateless session beans that is used in the absence of an EJB JAR
META-INF/jboss.xml configuration that overrides these settings. The functionality provided by each interceptor
is:

• org.jboss.proxy.ejb.HomeInterceptor: this handles the getHomeHandle, getEJBMetaData, and remove
methods of the EJBHome interface locally in the client VM. Any other methods are propagated to the next in-
terceptor.

• org.jboss.proxy.ejb.StatelessSessionInterceptor: this handles the toString, equals, hashCode, getH-

andle, getEJBHome and isIdentical methods of the EJBObject interface locally in the client VM. Any oth-
er methods are propagated to the next interceptor.

• org.jboss.proxy.SecurityInterceptor: this associates the current security context with the method invoca-
tion for use by other interceptors or the server.

• org.jboss.proxy.TransactionInterceptor: this associates any active transaction with the invocation method
invocation for use by other interceptors.

• org.jboss.invocation.InvokerInterceptor: this interceptor encapsulates the dispatch of the method invoca-
tion to the transport specific invoker. It knows if the client is executing in the same VM as the server and
will optimally route the invocation to a by reference invoker in this situation. When the client is external to
the server VM, this interceptor delegates the invocation to the transport invoker associated with the invoca-
tion context. In the case of the Example 5.1 configuration, this would be the invoker stub associated with
the jboss:service=invoker,type=jrmp, the JRMPInvoker service.

5.1.1. Specifying the EJB Proxy Configuration

To specify the EJB invocation transport and the client proxy interceptor stack, you need to define an invoker-

proxy-binding in either the EJB JAR META-INF/jboss.xml descriptor, or the server standardjboss.xml

descriptor. There are serveral default invoker-proxy-bindings defined in the standardjboss.xml descriptor
for the various default EJB container configurations and the standard RMI/JRMP and RMI/IIOP transport pro-
tocols. The current default proxy configurations are:

• entity-rmi-invoker: a RMI/JRMP configuration for entity beans

• clustered-entity-rmi-invoker: a RMI/JRMP configuration for clustered entity beans

• stateless-rmi-invoker: a RMI/JRMP configuration for stateless session beans

• clustered-stateless-rmi-invoker: a RMI/JRMP configuration for clustered stateless session beans

• stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans

• clustered-stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans

• message-driven-bean: a JMS invoker for message driven beans

EJBs on JBoss

168

• iiop: a RMI/IIOP for use with session and entity beans.

To introduce a new protocol binding, or customize the proxy factory, or the client side interceptor stack, re-
quires defining a new invoker-proxy-binding. The full invoker-proxy-binding DTD fragment for the spe-
cification of the proxy configuration is given in Figure 5.3.

Figure 5.3. The invoker-proxy-binding schema

The invoker-proxy-binding child elements are:

• name: The name element gives a unique name for the invoker-proxy-binding. The name is used to refer-
ence the binding from the EJB container configuration when setting the default proxy binding as well as the
EJB deployment level to specify addition proxy bindings. You will see how this is done when we look at
the jboss.xml elements that control the server side EJB container configuration.

• invoker-mbean: The invoker-mbean element gives the JMX ObjectName string of the detached invoker
MBean service the proxy invoker will be associated with.

• proxy-factory: The proxy-factory element specifies the fully qualified class name of the proxy factory,
which must implement the org.jboss.ejb.EJBProxyFactory interface. The EJBProxyFactory handles the
configuration of the proxy and the association of the protocol specific invoker and context. The current
JBoss implementations of the EJBProxyFactory interface include:

• org.jboss.proxy.ejb.ProxyFactory: The RMI/JRMP specific factory.

• org.jboss.proxy.ejb.ProxyFactoryHA: The cluster RMI/JRMP specific factory.

EJBs on JBoss

169

• org.jboss.ejb.plugins.jms.JMSContainerInvoker: The JMS specific factory.

• org.jboss.proxy.ejb.IORFactory: The RMI/IIOP specific factory.

• proxy-factory-config: The proxy-factory-config element specifies additional information for the proxy-

factory implementation. Unfortunately, its currently an unstructed collection of elements. Only a fraction
of the elements apply to each type of proxy factory. The child elements break down into the three invoca-
tion protocols: RMI/RJMP, RMI/IIOP and JMS.

For the RMI/JRMP specific proxy factories, org.jboss.proxy.ejb.ProxyFactory and
org.jboss.proxy.ejb.ProxyFactoryHA the following elements apply:

• client-interceptors: The client-interceptors define the home, remote and optionally the multi-val-
ued proxy interceptor stacks.

• web-class-loader: The web class loader defines the instance of the org.jboss.web.WebClassLoader

that should be associated with the proxy for dynamic class loading.

The following example gives a sample proxy-factory-config taken from the standardjboss.xml descriptor.

<invoker-proxy-bindings>
<invoker-proxy-binding>

<name>stateless-rmi-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>
<!-- ... -->
<invoker-proxy-bindings>

<container-configuration>
<container-name>Standard Stateless SessionBean</container-name>
<call-logging>false</call-logging>
<invoker-proxy-binding-name>stateless-rmi-invoker</invoker-proxy-binding-name>
<!-- ... -->

</container-configuration>
</invoker-proxy-bindings>

</invoker-proxy-bindings>

For the RMI/IIOP specific proxy factory, org.jboss.proxy.ejb.IORFactory, the following elements apply:

• poa: The portable object adapter usage, one of per-servent, shared

• register-ejbs-in-jnp-context: A flag indicating if the EJBs should be register in JNDI.

EJBs on JBoss

170

• jnp-context: The JNDI context in which to register EJBs.

• web-class-loader: The web class loader defines the instance of the org.jboss.web.WebClassLoader that
should be associated with the proxy for dynamic class loading.

Example 5.2 gives a sample proxy-factory-config fragment taken from the standardjboss.xml descriptor.

Example 5.2. A sample IOFactory proxy-factory-config

<proxy-factory-config>
<web-class-loader>org.jboss.iiop.WebCL</web-class-loader>
<poa>per-servant</poa>
<register-ejbs-in-jnp-context>true</register-ejbs-in-jnp-context>
<jnp-context>iiop</jnp-context>

</proxy-factory-config>

For the JMS specific proxy factory, org.jboss.ejb.plugins.jms.JMSContainerInvoker, there is an MDB-
Config

• MaximumSize: This specifies the upper limit to the number of concurrent MDBs that will be allowed for
the JMS destination associated with a given MDB deployment. This defaults to 15.

• MaxMessages: This specifies the maxMessages parameter value for the createConnectionConsumer meth-
od of javax.jms.QueueConnection and javax.jms.TopicConnection interfaces, as well as the maxMes-

sages parameter value for the createDurableConnectionConsumer method of
javax.jms.TopicConnection. It is the maximum number of messages that can be assigned to a server ses-
sion at one time. This defaults to 1. This value should not be modified from the default unless your JMS
provider indicates this is supported.

• MDBConfig: Configuration for the MDB JMS connection behavior. This include the reconnection interval
and dead letter queue elements:

• ReconnectIntervalSec: The time to wait (in seconds) before trying to recover the connection to the JMS
server.

• DLQConfig: Configuration for an MDB's dead letter queue, used when messages are redelivered too many
times.

• JMSProviderAdapterJNDI: The JNDI name of the JMS provider adapter in the java:/ namespace. This
is mandatory for an MDB and must implement org.jboss.jms.jndi.JMSProviderAdapter.

• ServerSessionPoolFactoryJNDI: The JNDI name of the session pool in the java:/ namespace of the JMS
provider's session pool factory. This is mandatory for an MDB and must implement
org.jboss.jms.asf.ServerSessionPoolFactory.

Example 5.3 gives a sample proxy-factory-config fragment taken from the standardjboss.xml descriptor.

Example 5.3. A sample JMSContainerInvoker proxy-factory-config

<proxy-factory-config>
<JMSProviderAdapterJNDI>DefaultJMSProvider</JMSProviderAdapterJNDI>
<ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
<MaximumSize>15</MaximumSize>
<MaxMessages>1</MaxMessages>

EJBs on JBoss

171

<MDBConfig>
<ReconnectIntervalSec>10</ReconnectIntervalSec>
<DLQConfig>

<DestinationQueue>queue/DLQ</DestinationQueue>
<MaxTimesRedelivered>10</MaxTimesRedelivered>
<TimeToLive>0</TimeToLive>

</DLQConfig>
</MDBConfig>

</proxy-factory-config>

5.2. The EJB Server Side View

Every EJB invocation must end up at a JBoss server hosted EJB container. In this section we will look at how
invocations are transported to the JBoss server VM and find their way to the EJB container via the JMX bus.

5.2.1. Detached Invokers - The Transport Middlemen

We looked at the detached invoker architecture in the context of exposing RMI compatible interfaces of MBean
services earlier. Here we will look at how detached invokers are used to expose the EJB container home and
bean interfaces to clients. The generic view of the invoker architecture is presented in Figure 5.4.

Figure 5.4. The transport invoker server side architecture

For each type of home proxy there is a binding to an invoker and its associated transport protocol. A container
may have multiple invocation protocols active simultaneously. The jboss.xml DTD configuration fragments
for the invoker configuration is given in Figure 5.5. The invoker-proxy-binding-name maps to an invoker-

proxy-binding/name element. At the container-configuration level this specifies the default invoker that
will be used for EJBs deployed to the container. At the bean level, the invoker-bindings specify one or more
invokers to use with the EJB container MBean.

EJBs on JBoss

172

Figure 5.5. The jboss.xml descriptor invoker configuration elements.

When one specifies multiple invokers for a given EJB deployment, the home proxy must be given a unique
JNDI binding location. This is specified by the invoker/jndi-name element value. Another issue when mul-
tiple invokers exist for an EJB is how to handle remote homes or interfaces obtained when the EJB calls other
beans. Any such interfaces need to use the same invoker used to call the outer EJB in order for the resulting re-
mote homes and interfaces to be compatible with the proxy the client has initiated the call through. The in-

voker/ejb-ref elements allow one to map from a protocol independent ENC ejb-ref to the home proxy bind-
ing for ejb-ref target EJB home that matches the referencing invoker type.

An example of using a custom JRMPInvoker MBean that enables compressed sockets for session beans can be
found in the org.jboss.test.jrmp package of the testsuite. The following example illustrates the custom
JRMPInvoker configuration and its mapping to a stateless session bean.

Example 5.4. The custom JRMPInvoker jboss-service.xml descriptor

<server>
<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"

name="jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory">
<attribute name="RMIObjectPort">4445</attribute>
<attribute name="RMIClientSocketFactory">

org.jboss.test.jrmp.ejb.CompressionClientSocketFactory
</attribute>
<attribute name="RMIServerSocketFactory">

org.jboss.test.jrmp.ejb.CompressionServerSocketFactory
</attribute>

</mbean>

EJBs on JBoss

173

</server>

Example 5.5. The jboss.xml descriptor using the custom invoker

<?xml version="1.0"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<!-- The jboss.xml descriptor for the jrmp-comp.jar ejb unit -->
<jboss>

<enterprise-beans>
<session>

<ejb-name>StatelessSession</ejb-name>
<configuration-name>Standard Stateless SessionBean</configuration-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-compression-invoker
</invoker-proxy-binding-name>
<jndi-name>jrmp-compressed/StatelessSession</jndi-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<invoker-proxy-binding>
<name>stateless-compression-invoker</name>
<invoker-mbean>

jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory
</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

Here the default JRMPInvoker has been customized to bind to port 4445 and to use custom socket factories that
enable compression at the transport level. The StatelessSession EJB invoker-bindings settings specify that
the stateless-compression-invoker will be used with the home interface bound under the JNDI name jrmp-

compressed/StatelessSession.

An example of using the HttpInvoker to configure a stateless session bean to use the RMI/HTTP protocol can
be found in the org.jboss.test.hello testsuite package. Example 5.6 illsutrates the custom settings.

EJBs on JBoss

174

Example 5.6. A sample jboss.xml descriptor for enabling RMI/HTTP for a stateless session bean.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<jboss>
<enterprise-beans>

<session>
<ejb-name>HelloWorldViaHTTP</ejb-name>
<jndi-name>helloworld/HelloHTTP</jndi-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-http-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<!-- A custom invoker for RMI/HTTP -->
<invoker-proxy-binding>

<name>stateless-http-invoker</name>
<invoker-mbean>jboss:service=invoker,type=http</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

Here a custom invoker-proxy-binding named stateless-http-invoker is defined. It uses the HttpInvoker

MBean as the detached invoker. The jboss:service=invoker,type=http name is the default name of the Ht-

tpInvoker MBean as found in the http-inovker.sar/META-INF/jboss-service.xml descriptor, and its ser-
vice descriptor fragment is show here:

<!-- The HTTP invoker service configration -->
<mbean code="org.jboss.invocation.http.server.HttpInvoker"

name="jboss:service=invoker,type=http">
<!-- Use a URL of the form http://<hostname>:8080/invoker/EJBInvokerServlet

where <hostname> is InetAddress.getHostname value on which the server
is running. -->

<attribute name="InvokerURLPrefix">http://</attribute>
<attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerServlet</attribute>
<attribute name="UseHostName">true</attribute>

</mbean>

EJBs on JBoss

175

The client proxy posts the EJB invocation content to the EJBInvokerServlet URL specified in the HttpIn-

voker service configuration.

5.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org.jboss.invocation.jrmp.server.JRMPInvokerHA service is an extension of the JRMPInvoker that is a
cluster aware invoker. The JRMPInvokerHA fully supports all of the attributes of the JRMPInvoker. This means
that customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as
well. For additional information on the clustering architecture and the implementation of the HA RMI proxies
see the JBoss Clustering docs.

5.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered environment. An HA
capable extension of the HTTP invoker has been added that borrows much of its functionality from the HA-
RMI/JRMP clustering.

To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through
either a jboss.xml descriptor, or the standardjboss.xml descriptor. Example 5.7 shows is an example of a
stateless session configuration taken from the org.jboss.test.hello testsuite package.

Example 5.7. A jboss.xml stateless session configuration for HA-RMI/HTTP

<jboss>
<enterprise-beans>

<session>
<ejb-name>HelloWorldViaClusteredHTTP</ejb-name>
<jndi-name>helloworld/HelloHA-HTTP</jndi-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-httpHA-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>
<clustered>true</clustered>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<invoker-proxy-binding>
<name>stateless-httpHA-invoker</name>
<invoker-mbean>jboss:service=invoker,type=httpHA</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

EJBs on JBoss

176

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

The stateless-httpHA-invoker invoker-proxy-binding references the jboss:service=invoker,type=httpHA

invoker service. This service is configured in the http-invoker.sar/META-INF/jboss-service.xml

descriptor, and its default configuration from the SARdescriptor is:

<mbean code="org.jboss.invocation.http.server.HttpInvokerHA"
name="jboss:service=invoker,type=httpHA">

<!-- Use a URL of the form
http://<hostname>:8080/invoker/EJBInvokerHAServlet
where <hostname> is InetAddress.getHostname value on which the server
is running.

-->
<attribute name="InvokerURLPrefix">http://</attribute>
<attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerHAServlet</attribute>
<attribute name="UseHostName">true</attribute>

</mbean>

The URL used by the invoker proxy is the EJBInvokerHAServlet mapping as deployed on the cluster node.
The HttpInvokerHA instances across the cluster form a collection of candidate http URLs that are made avail-
able to the client side proxy for failover and/or load balancing.

5.3. The EJB Container

An EJB container is the component that manages a particular class of EJB. In JBoss there is one instance of the
org.jboss.ejb.Container created for each unique configuration of an EJB that is deployed. The actual object
that is instantiated is a subclass of Container and the creation of the container instance is managed by the EJB-

Deployer MBean.

5.3.1. EJBDeployer MBean

The org.jboss.ejb.EJBDeployer MBean is responsible for the creation of EJB containers. Given an EJB JAR
that is ready for deployment, the EJBDeployer will create and initialize the necessary EJB containers, one for
each type of EJB. The configurable attributes of the EJBDeployer are:

• VerifyDeployments: a boolean flag indicating if the EJB verifer should be run. This validates that the EJBs
in a deployment unit conform to the EJB 2.0 specification. Setting this to true is useful for ensuring your
deployments are valid.

• VerifierVerbose: A boolean that controls the verboseness of any verification failures/warnings that result
from the verification process.

• StrictVerifier: A boolean that enables/disables strict verification. When strict verification is enable an EJB
will deploy only if verifier reports no errors.

• ValidateDTDs: a boolean flag that indicates if the ejb-jar.xml and jboss.xml descriptors should be valid-
ated against their declared DTDs. Setting this to true is useful for ensuring your deployment descriptors are
valid.

• MetricsEnabled: a boolean flag that controls whether container interceptors marked with an metricsEn-

EJBs on JBoss

177

abled=true attribute should be included in the configuration. This allows one to define a container inter-
ceptor configuration that includes metrics type interceptors that can be toggled on and off.

• WebServiceName: The JMX ObjectName string of the web service MBean that provides support for the
dynamic class loading of EJB classes.

• TransactionManagerServiceName: The JMX ObjectName string of the JTA transaction manager service.
This must have an attribute named TransactionManager that returns that
javax.transaction.TransactionManager instance.

The deployer contains two central methods: deploy and undeploy. The deploy method takes a URL, which
either points to an EJB JAR, or to a directory whose structure is the same as a valid EJB JAR (which is con-
venient for development purposes). Once a deployment has been made, it can be undeployed by calling un-
deploy on the same URL. A call to deploy with an already deployed URL will cause an undeploy, followed by
deployment of the URL, such as a re-deploy. JBoss has support for full re-deployment of both implementation
and interface classes, and will reload any changed classes. This will allow you to develop and update EJBs
without ever stopping a running server.

During the deployment of the EJB JAR the EJBDeployer and its associated classes perform three main func-
tions, verify the EJBs, create a container for each unique EJB, initialize the container with the deployment con-
figuration information. We will talk about each function in the following sections.

5.3.1.1. Verifying EJB deployments

When the VerifyDeployments attribute of the that the EJBDeployer is true, the deployer performs a verification
of EJBs in the deployment. The verification checks that an EJB meets EJB specification compliance. This en-
tails validating that the EJB deployment unit contains the required home and remote, local home and local in-
terfaces, and that the objects appearing in these interfaces are of the proper types, and that the required methods
are present in the implementation class. This is a useful behavior that is enabled by default since there are a
number of steps that an EJB developer and deployer must perform correctly to construct a proper EJB JAR, and
it is easy to make a mistake. The verification stage attempts to catch any errors and fail the deployment with an
error that indicates what needs to be corrected.

Probably the most problematic aspect of writing EJBs is the fact that there is a disconnection between the bean
implementation and its remote and home interfaces, as well as its deployment descriptor configuration. It is
easy to have these separate elements get out of synch. One tool that helps eliminate this problem is XDoclet, an
extension of the standard JavaDoc Doclet engine. It works off of custom JavaDoc tags in the EJB bean imple-
mentation class and creates the remote and home interfaces as well as the deployment descriptors. See the
XDoclet home page, http://sourceforge.net/projects/xdoclet for additional details.

5.3.1.2. Deploying EJBs Into Containers

The most important role performed by the EJBDeployer is the creation of an EJB container and the deployment
of the EJB into the container. The deployment phase consists of iterating over EJBs in an EJB JAR, and ex-
tracting the bean classes and their metadata as described by the ejb-jar.xml and jboss.xml deployment
descriptors. For each EJB in the EJB jar, the following steps are performed:

• Create subclass of org.jboss.ejb.Container depending on the type of the EJB: stateless, stateful, BMP
entity, CMP entity, or message driven. The container is assigned a unique ClassLoader from which it can
load local resources. The uniqueness of the ClassLoader is also used to isolate the standard java:comp

JNDI namespace from other J2EE components.

• Set all container configurable attributes from a merge of the jboss.xml and standardjboss.xml

EJBs on JBoss

178

http://sourceforge.net/projects/xdoclet

descriptors.

• Create and add the container interceptors as configured for the container.

• Associate the container with an application object. This application object represents a J2EE enterprise ap-
plication and may contain multiple EJBs and web contexts.

If all EJBs are successfully deployed, the application is started which in turn starts all containers and makes the
EJBs available to clients. If any EJB fails to deploy, a deployment exception is thrown and the deployment
module is failed.

5.3.1.3. Container configuration information

JBoss externalizes most if not all of the setup of the EJB containers using an XML file that conforms to the
jboss_3_2.dtd. The section of the jboss_3_2 DTD that relates to container configuration information is shown
in Figure 5.6.

EJBs on JBoss

179

Figure 5.6. The jboss_3_2 DTD elements related to container configuration.

The container-configuration element and its subelements specify container configuration settings for a type
of container as given by the container-name element. Each configuration specifies information such as the de-
fault invoker type, the container interceptor makeup, instance caches/pools and their sizes, persistence manager,
security, and so on. Because this is a large amount of information that requires a detailed understanding of the
JBoss container architecture, JBoss ships with a standard configuration for the four types of EJBs. This config-
uration file is called standardjboss.xml and it is located in the conf directory of any configuration file set that

EJBs on JBoss

180

uses EJBs. Example 5.8 gives a sample of a configuration from the standardjboss.xml.

Example 5.8. An example of a complex container-configuration element from the
server/default/conf/standardjboss.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<jboss>
<!-- ... -->
<container-configurations>

<container-configuration>
<container-name>Standard CMP 2.x EntityBean</container-name>
<call-logging>false</call-logging>
<invoker-proxy-binding-name>entity-rmi-invoker</invoker-proxy-binding-name>
<sync-on-commit-only>false</sync-on-commit-only>
<container-interceptors>

<interceptor>
org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor

</interceptor>
<interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
<interceptor metricsEnabled="true">

org.jboss.ejb.plugins.MetricsInterceptor
</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
<interceptor>

org.jboss.ejb.plugins.EntityReentranceInterceptor
</interceptor>
<interceptor>

org.jboss.resource.connectionmanager.CachedConnectionInterceptor
</interceptor>
<interceptor>

org.jboss.ejb.plugins.EntitySynchronizationInterceptor
</interceptor>
<interceptor>

org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor
</interceptor>

</container-interceptors>
<instance-pool>

org.jboss.ejb.plugins.EntityInstancePool
</instance-pool>
<instance-cache>

org.jboss.ejb.plugins.InvalidableEntityInstanceCache
</instance-cache>
<persistence-manager>

org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager
</persistence-manager>
<locking-policy>

org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock
</locking-policy>
<container-cache-conf>

<cache-policy>
org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy

</cache-policy>
<cache-policy-conf>

<min-capacity>50</min-capacity>
<max-capacity>1000000</max-capacity>
<overager-period>300</overager-period>
<max-bean-age>600</max-bean-age>
<resizer-period>400</resizer-period>
<max-cache-miss-period>60</max-cache-miss-period>
<min-cache-miss-period>1</min-cache-miss-period>
<cache-load-factor>0.75</cache-load-factor>

</cache-policy-conf>

EJBs on JBoss

181

</container-cache-conf>
<container-pool-conf>

<MaximumSize>100</MaximumSize>
</container-pool-conf>
<commit-option>B</commit-option>

</container-configuration>
<!-- ... -->

</container-configurations>
</jboss>

These two examples demonstrate how extensive the container configuration options are. The container config-
uration information can be specified at two levels. The first is in the standardjboss.xml file contained in the
configuration file set directory. The second is at the EJB JAR level. By placing a jboss.xml file in the EJB
JAR META-INF directory, you can specify either overrides for container configurations in the standardjboss.xml
file, or entirely new named container configurations. This provides great flexibility in the configuration of con-
tainers. As you have seen, all container configuration attributes have been externalized and as such are easily
modifiable. Knowledgeable developers can even implement specialized container components, such as instance
pools or caches, and easily integrate them with the standard container configurations to optimize behavior for a
particular application or environment.

Figure 5.7. The jboss.xml descriptor EJB to container configuration mapping elements

How an EJB deployment chooses its container configuration is based on the explicit or implict jboss/en-

terprise-beans/<type>/configuration-name element. Figure 5.7 shows the jboss.xml DTD fragment that
shows how an EJB can declare which container configuration it should use.

The configuration-name element is a link to a container-configurations/container-configuration ele-
ment in Figure 5.6. It specifies which container configuration to use for the referring EJB. The link is from a
configuration-name element to a container-name element. You are able to specify container configurations
per class of EJB by including a container-configuration element in the EJB definition. Typically one does
not define completely new container configurations, although this is supported. The typical usage of a
jboss.xml level container-configuration is to override one or more aspects of a container-configuration

coming from the standardjboss.xml descriptor. This is done by specifying conatiner-configuration that
references the name of an existing standardjboss.xml container-configuration/container-name as the
value for the container-configuration/extends attribute. Example 5.9 shows an example of defining a new
Secured Stateless SessionBean configuration that is an extension of the standard stateless session configura-
tion whose name is Standard Stateless SessionBean.

Example 5.9. An example of overriding the standardjboss.xml container stateless session beans
configuration to enable secured access.

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<session>

EJBs on JBoss

182

<ejb-name>EchoBean</ejb-name>
<configuration-name>Secured Stateless SessionBean</configuration-name>
<!-- ... -->

</session>
</enterprise-beans>
<container-configurations>

<container-configuration extends="Standard Stateless SessionBean">
<container-name>Secured Stateless SessionBean</container-name>
<!-- Override the container security domain -->
<security-domain>java:/jaas/my-security-domain</security-domain>

</container-configuration>
</container-configurations>

</jboss>

If an EJB does not provide a container configuration specification in the deployment unit EJB JAR, the contain-
er factory chooses a container configuration from the standardjboss.xml descriptor based on the type of the
EJB. So, in reality there is an implicit configuration-name element for every type of EJB, and the mappings
from the EJB type to default container configuration name are as follows:

• container-managed persistence entity version 2.0 = Standard CMP 2.x EntityBean

• container-managed persistence entity version 1.1 = Standard CMP EntityBean

• bean-managed persistence entity = Standard BMP EntityBean

• stateless session = Standard Stateless SessionBean

• stateful session = Standard Stateful SessionBean

• message driven = Standard Message Driven Bean

It is not necessary to indicate which container configuration an EJB is using if you want to use the default based
on the bean type. It probably provides for a more self-contained descriptor to include the configuration-name
element, but this is a matter of style.

Now that you know how to specify which container configuration an EJB is using, and that you can define a
deployment unit level override, the question is what are all of those container-configuration child elements?
This question will be addressed element by element in the following sections. A number of the elements specify
interface class implementations whose configuration is affected by other elements, so before starting in on the
configuration elements you need to understand the org.jboss.metadata.XmlLoadable interface.

The XmlLoadable interface is a simple interface that consists of a single method. The interface definition is:

import org.w3c.dom.Element;
public interface XmlLoadable
{

public void importXml(Element element) throws Exception;
}

Classes implement this interface to allow their configuration to be specified via an XML document fragment.
The root element of the document fragment is what would be passed to the importXml method. You will see a
few examples of this as the container configuration elements are described in the following sections.

5.3.1.3.1. The container-name Element

The container-name element specifies a unique name for a given configuration. EJBs link to a particular con-
tainer configuration by setting their configuration-name element to the value of the container-name for the

EJBs on JBoss

183

container configuration.

5.3.1.3.2. The call-logging Element

The call-logging element expects a boolean (true or false) as its value to indicate whether or not the LogIn-

terceptor should log method calls to a container. This is somewhat obsolete with the change to log4j, which
provides a fine-grained logging API.

5.3.1.3.3. The invoker-proxy-binding-name Element

The invoker-proxy-binding-name element specifies the name of the default invoker to use. In the absence of a
bean level invoker-bindings specification, the invoker-proxy-binding whose name matches the invoker-

proxy-binding-name element value will be used to create home and remote proxies.

5.3.1.3.4. The container-interceptors Element

The container-interceptors element specifies one or more interceptor elements that are to be configured as
the method interceptor chain for the container. The value of the interceptor element is a fully qualified class
name of an org.jboss.ejb.Interceptor interface implementation. The container interceptors form a linked-

list structure through which EJB method invocations pass. The first interceptor in the chain is invoked when
the MBeanServer passes a method invocation to the container. The last interceptor invokes the business method
on the bean. We will discuss the Interceptor interface latter in this chapter when we talk about the container
plugin framework. Generally, care must be taken when changing an existing standard EJB interceptor configur-
ation as the EJB contract regarding security, transactions, persistence, and thread safety derive from the inter-
ceptors.

5.3.1.3.5. The instance-pool and container-pool-conf Elements

Figure 5.8. The instance-pool and container-pool-conf elements

EJBs on JBoss

184

The instance-pool element specifies the fully qualified class name of an org.jboss.ejb.InstancePool inter-
face implementation to use as the container InstancePool. We will discuss the InstancePool interface in detail
latter in this chapter when we talk about the container plugin framework.

The container-pool-conf is passed to the InstancePool implementation class given by the instance-pool ele-
ment if it implements XmlLoadable interface. All current JBoss InstancePool implementations derive from the
org.jboss.ejb.plugins.AbstractInstancePool class and it provides support for the MinimumSize, Maximum-
Size, strictMaximumSize and strictTimeout container-pool-conf child elements. The MinimumSize ele-
ment gives the minimum number of instances to keep in the pool, although JBoss does not currently seed an
InstancePool to the MinimumSize value.

The MaximumSize specifies the maximum number of pool instances that are allowed. The default use of Maxi-
umSize may not be what you expect. The pool MaximumSize is the maximum number of EJB instances that are
kept available, but additional instances can be created if the number of concurrent requests exceeds the Maxim-

umSize value. If you want to limit the maximum concurrency of an EJB to the pool MaximumSize, you need to
set the strictMaximumSize element to true. When strictMaximumSize is true, only MaximumSize EJB in-
stances may be active. When there are MaximumSize active instances, any subsequent requests will be blocked
until an instance is freed back to the pool. The default value for strictMaximumSize is false. How long a re-
quest blocks waiting for an instance pool object is controlled by the strictTimeout element. The strict-

Timeout defines the time in milliseconds to wait for an instance to be returned to the pool when there are Max-

imumSize active instances. A value less than or equal to 0 will mean not to wait at all. When a request times out
waiting for an instance a java.rmi.ServerException is generated and the call aborted. This is parsed as a Long

so the maximum possible wait time is 9,223,372,036,854,775,807 or about 292,471,208 years, and this is the
default value.

5.3.1.3.6. The instance-cache and container-cache-conf Elements

EJBs on JBoss

185

Figure 5.9. The instance-cache and container-cache-conf and related elements

The instance-cache element specifies the fully qualified class name of the org.jboss.ejb.InstanceCache

interface implementation. This element is only meaningful for entity and stateful session beans as these are the
only EJB types that have an associated identity. We will discuss the InstanceCache interface in detail latter in
this chapter when we talk about the container plugin framework.

The container-cache-conf element is passed to the InstanceCache implementation if it supports the Xml-

Loadable interface. All current JBoss InstanceCache implementations derive from the
org.jboss.ejb.plugins.AbstractInstanceCache class and it provides support for the XmlLoadable interface
and uses the cache-policy child element as the fully qualified class name of an org.jboss.util.CachePolicy

implementation that is used as the instance cache store. The cache-policy-conf child element is passed to the
CachePolicy implementation if it supports the XmlLoadable interface. If it does not, the cache-policy-conf

will silently be ignored.

There are two JBoss implementations of CachePolicy used by the standardjboss.xml configuration that sup-
port the current array of cache-policy-conf child elements. The classes are
org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy and
org.jboss.ejb.plugins.LRUStatefulContextCachePolicy. The LRUEnterpriseContextCachePolicy is used
by entity bean containers while the LRUStatefulContextCachePolicy is used by stateful session bean contain-
ers. Both cache policies support the following cache-policy-conf child elements:

• min-capacity: specifies the minimum capacity of this cache

• max-capacity: specifies the maximum capacity of the cache, which cannot be less than min-capacity.

• overager-period: specifies the period in seconds between runs of the overager task. The purpose of the
overager task is to see if the cache contains beans with an age greater than the max-bean-age element value.
Any beans meeting this criterion will be passivated.

• max-bean-age: specifies the maximum period of inactivity in seconds a bean can have before it will be pas-
sivated by the overager process.

• resizer-period: specifies the period in seconds between runs of the resizer task. The purpose of the resizer
task is to contract or expand the cache capacity based on the remaining three element values in the follow-
ing way. When the resizer task executes it checks the current period between cache misses, and if the period
is less than the min-cache-miss-period value the cache is expanded up to the max-capacity value using
the cache-load-factor. If instead the period between cache misses is greater than the max-

cache-miss-period value the cache is contracted using the cache-load-factor.

• max-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the
cache capacity be contracted. It is equivalent to the minimum miss rate that will be tolerated before the
cache is contracted.

• min-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the
cache capacity be expanded. It is equivalent to the maximum miss rate that will be tolerated before the
cache is expanded.

• cache-load-factor: specifies the factor by which the cache capacity is contracted and expanded. The factor
should be less than 1. When the cache is contracted the capacity is reduced so that the current ratio of beans
to cache capacity is equal to the cache-load-factor value. When the cache is expanded the new capacity is
determined as current-capacity * 1/cache-load-factor. The actual expansion factor may be as high as

EJBs on JBoss

186

2 based on an internal algorithm based on the number of cache misses. The higher the cache miss rate the
closer the true expansion factor will be to 2.

The LRUStatefulContextCachePolicy also supports the remaining child elements:

• remover-period: specifies the period in seconds between runs of the remover task. The remover task re-
moves passivated beans that have not been accessed in more than max-bean-life seconds. This task pre-
vents stateful session beans that were not removed by users from filling up the passivation store.

• max-bean-life: specifies the maximum period of inactivity in seconds that a bean can exist before being re-
moved from the passivation store.

An alternative cache policy implementation is the org.jboss.ejb.plugins.NoPassivationCachePolicy class,
which simply never passivates instances. It uses an in-memory HashMap implementation that never discards in-
stances unless they are explicitly removed. This class does not support any of the cache-policy-conf configur-
ation elements.

5.3.1.3.7. The persistence-manager Element

The persistence-manager element value specifies the fully qualified class name of the persistence manager
implementation. The type of the implementation depends on the type of EJB. For stateful session beans it must
be an implementation of the org.jboss.ejb.StatefulSessionPersistenceManager interface. For BMP entity
beans it must be an implementation of the org.jboss.ejb.EntityPersistenceManager interface, while for
CMP entity beans it must be an implementation of the org.jboss.ejb.EntityPersistenceStore interface.

5.3.1.3.8. The web-class-loader Element

The web-class-loader element specifies a subclass of org.jboss.web.WebClassLoader that is used in con-
junction with the WebService MBean to allow dynamic loading of resources and classes from deployed ears,
EJB JARs and wars. A WebClassLoader is associated with a Container and must have an
org.jboss.mx.loading.UnifiedClassLoader as its parent. It overrides the getURLs() method to return a dif-
ferent set of URLs for remote loading than what is used for local loading.

WebClassLoader has two methods meant to be overriden by subclasses: getKey() and getBytes(). The latter is
a no-op in this implementation and should be overriden by subclasses with bytecode generation ability, such as
the classloader used by the iiop module.

WebClassLoader subclasses must have a constructor with the same signature as the WebClassLoad-

er(ObjectName containerName, UnifiedClassLoader parent) constructor.

5.3.1.3.9. The locking-policy Element

The locking-policy element gives the fully qualified class name of the EJB lock implementation to use. This
class must implement the org.jboss.ejb.BeanLock interface. The current JBoss versions include:

• org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock: an implementation that holds threads awaiting
the transactional lock to be freed in a fair FIFO queue. Non-transactional threads are also put into this wait
queue as well. This class pops the next waiting transaction from the queue and notifies only those threads
waiting associated with that transaction. The QueuedPessimisticEJBLock is the current default used by the
standard configurations.

• org.jboss.ejb.plugins.lock.SimpleReadWriteEJBLock: This lock allows multiple read locks concur-
rently. Once a writer has requested the lock, future read-lock requests whose transactions do not already

EJBs on JBoss

187

have the read lock will block until all writers are done; then all the waiting readers will concurrently go
(depending on the reentrant setting / methodLock). A reader who promotes gets first crack at the write lock,
ahead of other waiting writers. If there is already a reader that is promoting, we throw an inconsistent read
exception. Of course, writers have to wait for all read-locks to release before taking the write lock.

• org.jboss.ejb.plugins.lock.NoLock: an anti-locking policy used with the instance per transaction container
configurations.

We will talk in more detail about the locking policy usage in Section 5.4.

5.3.1.3.10. The commit-option and optiond-refresh-rate Element

The commit-option value specifies the EJB entity bean persistent storage commit option. It must be one of A,
B, C or D. The meaning of the option values is:

• A: the container caches the beans state between transactions. This option assumes that the container is the
only user accessing the persistent store. This assumption allows the container to synchronize the in-memory
state from the persistent storage only when absolutely necessary. This occurs before the first business meth-
od executes on a found bean or after the bean is passivated and reactivated to serve another business meth-
od. This behavior is independent of whether the business method executes inside a transaction context.

• B: the container caches the bean state between transactions. However, unlike option A the container does
not assume exclusive access to the persistent store. Therefore, the container will synchronize the in-memory
state at the beginning of each transaction. Thus, business methods executing in a transaction context don't
see much benefit from the container caching the bean, whereas business methods executing outside a trans-
action context (transaction attributes Never, NotSupported or Supports) access the cached (and potentially
invalid) state of the bean.

• C: the container does not cache bean instances. The in-memory state must be synchronized on every trans-
action start. For business methods executing outside a transaction the synchronization is still performed, but
the ejbLoad executes in the same transaction context as that of the caller.

• D: is a JBoss specific feature which is not described in the EJB specification. It is a lazy read scheme where
bean state is cached between transactions as with option A, but the state is periodically resynchronized with
that of the persistent store. The default time between reloads is 30 seconds, but may configured using the
optiond-refresh-rate element.

5.3.1.3.11. The security-domain Element

Inside the EJB org.jboss.ejb.Container class, the security-domain element specifies the JNDI name of the
object that implements the org.jboss.security.AuthenticationManager and
org.jboss.security.RealmMapping interfaces. Usually one specifies the security-domain globally under the
jboss root element so that all EJBs in a given deployment are secured. The details of the security manager inter-
faces and configuring the security layer are discussed in Chapter 8.

5.3.1.3.12. cluster-config

EJBs on JBoss

188

Figure 5.10. The cluster-config and related elements

The cluster-config element allows to specify cluster specific settings for all EJBs that use the container con-
figuration. Specficiation of the cluster configuration may be done at the container configuration level or at the
individual EJB deployment level.

The partition-name element indicates where to find the org.jboss.ha.framework.interfaces.HAPartition

interface to be used by the container to exchange clustering information. This is not the full JNDI name under
which HAPartition is bound. Rather, it should correspond to the PartitionName attribute of the ClusterPar-

titionMBean service that is managing the desired cluster. The actual JNDI name of the HAPartition binding
will be formed by appending /HASessionState/ to the partition-name value. The default value is DefaultPar-

tition.

The home-load-balance-policy element indicates the Java class name to be used to load balance calls made
on the home proxy. The class must implement the org.jboss.ha.framework.interface.LoadBalancePolicy

interface. The default policy is org.jboss.ha.framework.interfaces.RoundRobin.

The bean-load-balance-policy element indicates the java class name to be used to load balance calls in the
bean proxy. The class must implement the org.jboss.ha.framework.interface.LoadBalancePolicy inter-
face. For entity beans and stateful session beands, the default is
org.jboss.ha.framework.interfaces.FirstAvailavble. For stateless session beans,
org.jboss.ha.framework.interfaces.RoundRobin.

The session-state-manager-jndi-name element indicates the name of the
org.jboss.ha.framework.interfaces.HASessionState to be used by the container as a backend for state ses-
sion management in the cluster. Unlike the partition-name element, this is a JNDI name under which the
HASessionState implementation is bound. The default location used is /HASessionState/Default.

5.3.1.3.13. depends

The depends element gives a JMX ObjectName of a service on which the container or EJB depends. Specifica-
tion of explicit dependencies on other services avoids having to rely on the deployment order being after the re-
quired services are started.

5.3.2. Container Plug-in Framework

The JBoss EJB container uses a framework pattern that allows one to change implementations of various as-
pects of the container behavior. The container itself does not perform any significant work other than connect-
ing the various behavioral components together. Implementations of the behavioral components are referred to
as plugins, because you can plug in a new implementation by changing a container configuration. Examples of

EJBs on JBoss

189

plug-in behavior you may want to change include persistence management, object pooling, object caching, con-
tainer invokers and interceptors. There are four subclasses of the org.jboss.ejb.Container class, each one
implementing a particular bean type:

• org.jboss.ejb.EntityContainer handles javax.ejb.EntityBean types

• org.jboss.ejb.StatelessSessionContainer handles Stateless javax.ejb.SessionBean types

• org.jboss.ejb.StatefulSessionContainer handles Stateful javax.ejb.SessionBean types

• org.jboss.ejb.MessageDrivenContainer handles javax.ejb.MessageDrivenBean types

The EJB containers delegate much of their behavior to components known as container plug-ins. The interfaces
that make up the container plugin points include the following:

• org.jboss.ejb.ContainerPlugin
• org.jboss.ejb.ContainerInvoker
• org.jboss.ejb.Interceptor
• org.jboss.ejb.InstancePool
• org.jboss.ejb.InstanceCache
• org.jboss.ejb.EntityPersistanceManager
• org.jboss.ejb.EntityPersistanceStore
• org.jboss.ejb.StatefulSessionPersistenceManager

The container's main responsibility is to manage its plug-ins. This means ensuring that the plug-ins have all the
information they need to implement their functionality.

5.3.2.1. org.jboss.ejb.ContainerPlugin

The ContainerPlugin interface is the parent interface of all container plug-in interfaces. It provides a callback
that allows a container to provide each of its plug-ins a pointer to the container the plug-in is working on behalf
of. The ContainerPlugin interface is given below.

Example 5.10. The org.jboss.ejb.ContainerPlugin interface

public interface ContainerPlugin
extends org.jboss.system.Service

{
/**
* This callback is set by the container so that the plugin
* may access its container
*
* @param con the container which owns the plugin
*/
public void setContainer(Container con);

}

5.3.2.2. org.jboss.ejb.Interceptor

The Interceptor interface enables one to build a chain of method interceptors through which each EJB method
invocation must pass. The Interceptor interface is given below.

Example 5.11. The org.jboss.ejb.Interceptor interface

EJBs on JBoss

190

import org.jboss.invocation.Invocation;

public interface Interceptor
extends ContainerPlugin

{
public void setNext(Interceptor interceptor);
public Interceptor getNext();
public Object invokeHome(Invocation mi) throws Exception;
public Object invoke(Invocation mi) throws Exception;

}

All interceptors defined in the container configuration are created and added to the container interceptor chain
by the EJBDeployer. The last interceptor is not added by the deployer but rather by the container itself because
this is the interceptor that interacts with the EJB bean implementation.

The order of the interceptor in the chain is important. The idea behind ordering is that interceptors that are not
tied to a particular EnterpriseContext instance are positioned before interceptors that interact with caches and
pools.

Implementers of the Interceptor interface form a linked-list like structure through which the Invocation ob-
ject is passed. The first interceptor in the chain is invoked when an invoker passes a Invocation to the contain-
er via the JMX bus. The last interceptor invokes the business method on the bean. There are usually on the or-
der of five interceptors in a chain depending on the bean type and container configuration. Interceptor se-
mantic complexity ranges from simple to complex. An example of a simple interceptor would be LoggingIn-

terceptor, while a complex example is EntitySynchronizationInterceptor.

One of the main advantages of an interceptor pattern is flexibility in the arrangement of interceptors. Another
advantage is the clear functional distinction between different interceptors. For example, logic for transaction
and security is cleanly separated between the TXInterceptor and SecurityInterceptor respectively.

If any of the interceptors fail, the call is terminated at that point. This is a fail-quickly type of semantic. For ex-
ample, if a secured EJB is accessed without proper permissions, the call will fail as the SecurityInterceptor

before any transactions are started or instances caches are updated.

5.3.2.3. org.jboss.ejb.InstancePool

An InstancePool is used to manage the EJB instances that are not associated with any identity. The pools actu-
ally manage subclasses of the org.jboss.ejb.EnterpriseContext objects that aggregate unassociated bean in-
stances and related data.

Example 5.12. The org.jboss.ejb.InstancePool interface

public interface InstancePool
extends ContainerPlugin

{
/**
* Get an instance without identity. Can be used
* by finders and create-methods, or stateless beans
*
* @return Context /w instance
* @exception RemoteException
*/
public EnterpriseContext get() throws Exception;

/** Return an anonymous instance after invocation.
*
* @param ctx
*/

EJBs on JBoss

191

public void free(EnterpriseContext ctx);

/**
* Discard an anonymous instance after invocation.
* This is called if the instance should not be reused,
* perhaps due to some exception being thrown from it.
*
* @param ctx
*/
public void discard(EnterpriseContext ctx);

/**
* Return the size of the pool.
*
* @return the size of the pool.
*/
public int getCurrentSize();

/**
* Get the maximum size of the pool.
*
* @return the size of the pool.
*/
public int getMaxSize();

}

Depending on the configuration, a container may choose to have a certain size of the pool contain recycled in-
stances, or it may choose to instantiate and initialize an instance on demand.

The pool is used by the InstanceCache implementation to acquire free instances for activation, and it is used
by interceptors to acquire instances to be used for Home interface methods (create and finder calls).

5.3.2.4. org.jboss.ebj.InstanceCache

The container InstanceCache implementation handles all EJB-instances that are in an active state, meaning
bean instances that have an identity attached to them. Only entity and stateful session beans are cached, as these
are the only bean types that have state between method invocations. The cache key of an entity bean is the bean
primary key. The cache key for a stateful session bean is the session id.

Example 5.13. The org.jboss.ejb.InstanceCache interface

public interface InstanceCache
extends ContainerPlugin

{
/**
* Gets a bean instance from this cache given the identity.
* This method may involve activation if the instance is not
* in the cache.
* Implementation should have O(1) complexity.
* This method is never called for stateless session beans.
*
* @param id the primary key of the bean
* @return the EnterpriseContext related to the given id
* @exception RemoteException in case of illegal calls
* (concurrent / reentrant), NoSuchObjectException if
* the bean cannot be found.
* @see #release
*/
public EnterpriseContext get(Object id)

throws RemoteException, NoSuchObjectException;

/**
* Inserts an active bean instance after creation or activation.

EJBs on JBoss

192

* Implementation should guarantee proper locking and O(1) complexity.
*
* @param ctx the EnterpriseContext to insert in the cache
* @see #remove
*/
public void insert(EnterpriseContext ctx);

/**
* Releases the given bean instance from this cache.
* This method may passivate the bean to get it out of the cache.
* Implementation should return almost immediately leaving the
* passivation to be executed by another thread.
*
* @param ctx the EnterpriseContext to release
* @see #get
*/
public void release(EnterpriseContext ctx);

/**
* Removes a bean instance from this cache given the identity.
* Implementation should have O(1) complexity and guarantee
* proper locking.
*
* @param id the pimary key of the bean
* @see #insert
*/
public void remove(Object id);

/**
* Checks whether an instance corresponding to a particular
* id is active
*
* @param id the pimary key of the bean
* @see #insert
*/
public boolean isActive(Object id);

}

In addition to managing the list of active instances, the InstanceCache is also responsible for activating and
passivating instances. If an instance with a given identity is requested, and it is not currently active, the In-

stanceCache must use the InstancePool to acquire a free instance, followed by the persistence manager to ac-
tivate the instance. Similarly, if the InstanceCache decides to passivate an active instance, it must call the per-
sistence manager to passivate it and release the instance to the InstancePool.

5.3.2.5. org.jboss.ejb.EntityPersistenceManager

The EntityPersistenceManager is responsible for the persistence of EntityBeans. This includes the following:

• Creating an EJB instance in a storage
• Loading the state of a given primary key into an EJB instance
• Storing the state of a given EJB instance
• Removing an EJB instance from storage
• Activating the state of an EJB instance
• Passivating the state of an EJB instance

Example 5.14. The org.jboss.ejb.EntityPersistenceManager interface

public interface EntityPersistenceManager
extends ContainerPlugin

{
/**
* Returns a new instance of the bean class or a subclass of the

EJBs on JBoss

193

* bean class.
*
* @return the new instance
*/
Object createBeanClassInstance() throws Exception;

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for calling the ejbCreate method
* on the instance and to handle the results properly wrt the persistent
* store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
*/
void createEntity(Method m,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for calling the ejbPostCreate method
* on the instance and to handle the results properly wrt the persistent
* store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
*/
void postCreateEntity(Method m,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when single entities are to be found. The
* persistence manager must find out whether the wanted instance is
* available in the persistence store, and if so it shall use the
* ContainerInvoker plugin to create an EJBObject to the instance, which
* is to be returned as result.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an EJBObject representing the found entity
*/
Object findEntity(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when collections of entities are to be
* found. The persistence manager must find out whether the wanted
* instances are available in the persistence store, and if so it
* shall use the ContainerInvoker plugin to create EJBObjects to
* the instances, which are to be returned as result.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an EJBObject collection representing the found
* entities
*/
Collection findEntities(Method finderMethod,

EJBs on JBoss

194

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when an entity shall be activated. The
* persistence manager must call the ejbActivate method on the
* instance.
*
* @param instance the instance to use for the activation
*
* @throws RemoteException thrown if some system exception occurs
*/
void activateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called whenever an entity shall be load from the
* underlying storage. The persistence manager must load the state
* from the underlying storage and then call ejbLoad on the
* supplied instance.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void loadEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is used to determine if an entity should be stored.
*
* @param instance the instance to check
* @return true, if the entity has been modified
* @throws Exception thrown if some system exception occurs
*/
boolean isModified(EntityEnterpriseContext instance) throws Exception;

/**
* This method is called whenever an entity shall be stored to the
* underlying storage. The persistence manager must call ejbStore
* on the supplied instance and then store the state to the
* underlying storage.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void storeEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be passivate. The
* persistence manager must call the ejbPassivate method on the
* instance.
*
* @param instance the instance to passivate
*
* @throws RemoteException thrown if some system exception occurs
*/
void passivateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be removed from the
* underlying storage. The persistence manager must call ejbRemove
* on the instance and then remove its state from the underlying
* storage.
*
* @param instance the instance to remove
*

EJBs on JBoss

195

* @throws RemoteException thrown if some system exception occurs
* @throws RemoveException thrown if the instance could not be removed
*/
void removeEntity(EntityEnterpriseContext instance)

throws RemoteException, RemoveException;
}

As per the EJB 2.0 specification, JBoss supports two entity bean persistence semantics: Container Managed
Persistence (CMP) and Bean Managed Persistence (BMP). The CMP implementation uses an implementation
of the org.jboss.ejb.EntityPersistanceStore interface. By default this is the
org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager which is the entry point for the CMP2 persistence en-
gine. The EntityPersistanceStore interface is shown below.

Example 5.15. The org.jboss.ejb.EntityPersistanceStore interface

public interface EntityPersistenceStore
extends ContainerPlugin

{
/**
* Returns a new instance of the bean class or a subclass of the
* bean class.
*
* @return the new instance
*
* @throws Exception
*/
Object createBeanClassInstance() throws Exception;

/**
* Initializes the instance context.
*
* <p>This method is called before createEntity, and should
* reset the value of all cmpFields to 0 or null.
*
* @param ctx
*
* @throws RemoteException
*/
void initEntity(EntityEnterpriseContext ctx);

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for handling the results
* properly wrt the persistent store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
* @return The primary key computed by CMP PM or null for BMP
*
* @throws Exception
*/
Object createEntity(Method m,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when single entities are to be found. The
* persistence manager must find out whether the wanted instance
* is available in the persistence store, if so it returns the
* primary key of the object.
*
* @param finderMethod the find method in the home interface that was

EJBs on JBoss

196

* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return a primary key representing the found entity
*
* @throws RemoteException thrown if some system exception occurs
* @throws FinderException thrown if some heuristic problem occurs
*/
Object findEntity(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when collections of entities are to be
* found. The persistence manager must find out whether the wanted
* instances are available in the persistence store, and if so it
* must return a collection of primaryKeys.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an primary key collection representing the found
* entities
*
* @throws RemoteException thrown if some system exception occurs
* @throws FinderException thrown if some heuristic problem occurs
*/
Collection findEntities(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when an entity shall be activated.
*
* <p>With the PersistenceManager factorization most EJB
* calls should not exists However this calls permits us to
* introduce optimizations in the persistence store. Particularly
* the context has a "PersistenceContext" that a PersistenceStore
* can use (JAWS does for smart updates) and this is as good a
* callback as any other to set it up.
* @param instance the instance to use for the activation
*
* @throws RemoteException thrown if some system exception occurs
*/
void activateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called whenever an entity shall be load from the
* underlying storage. The persistence manager must load the state
* from the underlying storage and then call ejbLoad on the
* supplied instance.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void loadEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is used to determine if an entity should be stored.
*
* @param instance the instance to check
* @return true, if the entity has been modified
* @throws Exception thrown if some system exception occurs
*/
boolean isModified(EntityEnterpriseContext instance) throws Exception;

EJBs on JBoss

197

/**
* This method is called whenever an entity shall be stored to the
* underlying storage. The persistence manager must call ejbStore
* on the supplied instance and then store the state to the
* underlying storage.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void storeEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be passivate. The
* persistence manager must call the ejbPassivate method on the
* instance.
*
* <p>See the activate discussion for the reason for
* exposing EJB callback * calls to the store.
*
* @param instance the instance to passivate
*
* @throws RemoteException thrown if some system exception occurs
*/
void passivateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be removed from the
* underlying storage. The persistence manager must call ejbRemove
* on the instance and then remove its state from the underlying
* storage.
*
* @param instance the instance to remove
*
* @throws RemoteException thrown if some system exception occurs
* @throws RemoveException thrown if the instance could not be removed
*/
void removeEntity(EntityEnterpriseContext instance)

throws RemoteException, RemoveException;
}

The default BMP implementation of the EntityPersistenceManager interface is
org.jboss.ejb.plugins.BMPPersistenceManager. The BMP persistence manager is fairly simple since all
persistence logic is in the entity bean itself. The only duty of the persistence manager is to perform container
callbacks.

5.3.2.6. org.jboss.ejb.StatefulSessionPersistenceManager

The StatefulSessionPersistenceManager is responsible for the persistence of stateful SessionBeans. This
includes the following:

• Creating stateful sessions in a storage
• Activating stateful sessions from a storage
• Passivating stateful sessions to a storage
• Removing stateful sessions from a storage

The StatefulSessionPersistenceManager interface is shown below.

Example 5.16. The org.jboss.ejb.StatefulSessionPersistenceManager interface

EJBs on JBoss

198

public interface StatefulSessionPersistenceManager
extends ContainerPlugin

{
public void createSession(Method m, Object[] args,

StatefulSessionEnterpriseContext ctx)
throws Exception;

public void activateSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException;

public void passivateSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException;

public void removeSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException, RemoveException;

public void removePassivated(Object key);
}

The default implementation of the StatefulSessionPersistenceManager interface is
org.jboss.ejb.plugins.StatefulSessionFilePersistenceManager. As its name implies, StatefulSes-

sionFilePersistenceManager utilizes the file system to persist stateful session beans. More specifically, the
persistence manager serializes beans in a flat file whose name is composed of the bean name and session id
with a .ser extension. The persistence manager restores a bean's state during activation and respectively stores
its state during passivation from the bean's .ser file.

5.4. Entity Bean Locking and Deadlock Detection

This section provides information on what entity bean locking is and how entity beans are accessed and locked
within JBoss. It also describes the problems you may encounter as you use entity beans within your system and
how to combat these issues. Deadlocking is formally defined and examined. And, finally, we walk you through
how to fine tune your system in terms of entity bean locking.

5.4.1. Why JBoss Needs Locking

Locking is about protecting the integrity of your data. Sometimes you need to be sure that only one user can up-
date critical data at one time. Sometimes, access to sensitive objects in your system need to be serialized so that
data is not corrupted by concurrent reads and writes. Databases traditionally provide this sort of functionality
with transactional scopes and table and row locking facilities.

Entity beans are a great way to provide an object-oriented interface to relational data. Beyond that, they can im-
prove performance by taking the load off of the database through caching and delaying updates until absolutely
needed so that the database efficiency can be maximized. But, with caching, data integrity is a problem, so
some form of application server level locking is needed for entity beans to provide the transaction isolation
properties that you are used to with traditional databases.

5.4.2. Entity Bean Lifecycle

With the default configuration of JBoss there is only one active instance of a given entity bean in memory at
one time. This applies for every cache configuration and every type of commit-option. The lifecycle for this in-
stance is different for every commit-option though.

• For commit option A, this instance is cached and used between transactions.

EJBs on JBoss

199

• For commit optoin B, this instance is cached and used between transactions, but is marked as dirty at the
end of a transaction. This means that at the start of a new transaction ejbLoad must be called.

• For commit option C, this instance is marked as dirty, released from the cache, and marked for passivation
at the end of a transaction.

• For commit option D, a background refresh thread periodically calls ejbLoad on stale beans within the
cache. Otherwise, this option works in the same way as A.

When a bean is marked for passivation, the bean is placed in a passivation queue. Each entity bean container
has a passivation thread that periodically passivates beans that have been placed in the passivation queue. A
bean is pulled out of the passivation queue and reused if the application requests access to a bean of the same
primary key.

On an exception or transaction rollback, the entity bean instance is thrown out of cache entirely. It is not put in-
to the passivation queue and is not reused by an instance pool. Except for the passivation queue, there is no en-
tity bean instance pooling.

5.4.3. Default Locking Behavior

Entity bean locking is totally decoupled from the entity bean instance. The logic for locking is totally isolated
and managed in a separate lock object. Because there is only one allowed instance of a given entity bean active
at one time, JBoss employs two types of locks to ensure data integrity and to conform to the EJB spec.

• Method Lock: The method lock ensures that only one thread of execution at a time can invoke on a given
Entity Bean. This is required by the EJB spec.

• Transaction Lock: A transaction lock ensures that only one transaction at a time has access to a give Entity
Bean. This ensures the ACID properties of transactions at the application server level. Since, by default,
there is only one active instance of any given Entity Bean at one time, JBoss must protect this instance from
dirty reads and dirty writes. So, the default entity bean locking behavior will lock an entity bean within a
transaction until it completes. This means that if any method at all is invoked on an entity bean within a
transaction, no other transaction can have access to this bean until the holding transaction commits or is
rolled back.

5.4.4. Pluggable Interceptors and Locking Policy

We saw that the basic entity bean lifecyle and behavior is defined by the container configuration defined in
standardjboss.xml descriptor. The following container configuration shows the container-interceptors

defintion for the Standard CMP 2.x EntityBean configuration.

Example 5.17. The Standard CMP 2.x EntityBean interceptor definition

<container-configuration>
<container-name>Standard CMP 2.x EntityBean</container-name>
<!-- ... -->
<container-interceptors>

<interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
<interceptor>org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>

EJBs on JBoss

200

<interceptor>
org.jboss.resource.connectionmanager.CachedConnectionInterceptor

</interceptor>
<interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>

</container-interceptors>
</container-configuration>

The interceptors shown above define most of the behavior of the entity bean. Below is an explanation of the in-
terceptors that are relevant to this section.

• EntityLockInterceptor: This interceptor's role is to schedule any locks that must be acquired before the in-
vocation is allowed to proceed. This interceptor is very lightweight and delegates all locking behavior to a
pluggable locking policy.

• EntityInstanceInterceptor: The job of this interceptor is to find the entity bean within the cache or create a
new one. This interceptor also ensures that there is only one active instance of a bean in memory at one
time.

• EntitySynchronizationInterceptor: The role of this interceptor is to synchronize the state of the cache
with the underlying storage. It does this with the ejbLoad and ejbStore semantics of the EJB specification.
In the presence of a transaction this is triggered by transaction demarcation. It registers a callback with the
underlying transaction monitor through the JTA interfaces. If there is no transaction the policy is to store
state upon returning from invocation. The synchronization polices A, B and C of the specification are taken
care of here as well as the JBoss specific commit-option D.

5.4.5. Deadlock

Finding deadlock problems and resolving them is the topic of this section. We will describe what deadlocking
MBeans, how you can detect it within your application, and how you can resolve deadlocks. Deadlock can oc-
cur when when two or more threads have locks on shared resources. Figure 5.11 illustrates a simple deadlock
scenario. Here, Thread 1 has the lock for Bean A, and Thread 2 has the lock for Bean B. At a later time,
Thread 1 tries to lock Bean B and blocks because Thread 2 has it. Likewise, as Thread 2 tries to lock A it also
blocks because Thread 1 has the lock. At this point both threads are deadlocked waiting for access to the re-
source already locked by the other thread.

Figure 5.11. Deadlock definition example

EJBs on JBoss

201

The default locking policy of JBoss is to lock an Entity bean when an invocation occurs in the context of a
transaction until the transaction completes. Because of this, it is very easy to encounter deadlock if you have
long running transactions that access many entity beans, or if you are not careful about ordering the access to
them. Various techniques and advanced configurations can be used to avoid deadlocking problems. They are
discussed later in this section.

5.4.5.1. Dedlock Detection

Fortunately, JBoss is able to perform deadlock detection. JBoss holds a global internal graph of waiting transac-
tions and what transactions they are blocking on. Whenever a thread determines that it cannot acquire an entity
bean lock, it figures out what transaction currently holds the lock on the bean and add itself to the blocked
transaction graph. An example of what the graph may look like is given in Table 5.1.

Table 5.1. An example blocked transaction table

Blocking TX Tx that holds needed lock

Tx1 Tx2

Tx3 Tx4

Tx4 Tx1

Before the thread actually blocks it tries to detect whether there is deadlock problem. It does this by traversing
the block transaction graph. As it traverses the graph, it keeps track of what transactions are blocked. If it sees a
blocked node more than once in the graph, then it knows there is deadlock and will throw an Application-

DeadlockException. This exception will cause a transaction rollback which will cause all locks that transaction
holds to be released. The algorithm for the deadlock dection is found in the BeanLockSupport deadlockDetec-

tion method. The following code shows this method.

Example 5.18. The org.jboss.ejb.plugins.lock.BeanLockSupport deadlockDetection method

// This following is for deadlock detection
protected static HashMap waiting = new HashMap();

public void deadlockDetection(Transaction miTx) throws Exception
{

HashSet set = new HashSet();
set.add(miTx);

Object checkTx = this.tx;
synchronized(waiting) {

while (checkTx != null) {
Object waitingFor = waiting.get(checkTx);
if (waitingFor != null) {

if (set.contains(waitingFor)) {
log.error("Application deadlock detected: " + miTx +

" has deadlock conditions");
throw new ApplicationDeadlockException("application deadlock detected");

}
set.add(waitingFor);

}
checkTx = waitingFor;

}
}

}

EJBs on JBoss

202

5.4.5.2. Catching ApplicationDeadlockException

Since JBoss can detect application deadlock, you should write your application so that it can retry a transaction
if the invocation fails because of the ApplicationDeadlockException. Unfortunately, this exception can be
deeply embedded within a RemoteException, so you have to search for it in your catch block. For example:

try {
// ...

} catch (RemoteException ex) {
Throwable cause = null;
RemoteException rex = ex;
while (rex.detail != null) {

cause = rex.detail;
if (cause instanceof ApplicationDeadlockException) {

// ... We have deadlock, force a retry of the transaction.
break;

}
if (cause instanceof RemoteException) {

rex = (RemoteException)cause;
}

}
}

5.4.5.3. Viewing Lock Information

The EntityLockMonitor MBean service allows one to view basic locking statistics as well as printing out the
state of the transaction locking table. To enable this monitor uncomment its configuration in the conf/

jboss-service.xml:

<mbean code="org.jboss.monitor.EntityLockMonitor"
name="jboss.monitor:name=EntityLockMonitor"/>

The EntityLockMonitor has no configurable attributes. It does have the following read-only attributes:

• MedianWaitTime: The median value of all times threads had to wait to acquire a lock.

• AverageContenders: The ratio of the total number of contentions to the sum of all threads that had to wait
for a lock.

• TotalContentions: The total number of threads that had to wait to acquire the transaction lock. This hap-
pens when a thread attempts to acquire a lock that is associated with another transaction

• MaxContenders: The maximum number of threads that were waiting to acquire the transaction lock.

It also has the following operations:

• clearMonitor: This operation resets the lock monitor state by zeroing all counters.

• printLockMonitor: This operation prints out a table of all EJB locks that lists the ejbName of the bean, the
total time spent waiting for the lock, the count of times the lock was waited on and the number of transac-
tions that timed out waiting for the lock.

5.4.6. Advanced Configurations and Optimizations

The default locking behavior of entity beans can cause deadlock. Since access to an entity bean locks the bean
into the transaction, this also can present a huge performance/throughput problem for your application. This

EJBs on JBoss

203

section walks through various techniques and configurations that you can use to optimize performance and re-
duce the possibility of deadlock.

5.4.6.1. Short-lived Transactions

Make your transactions as short-lived and fine-grained as possible. The shorter the transaction you have, the
less likelihood you will have concurrent access collisions and your application throughput will go up.

5.4.6.2. Ordered Access

Ordering the access to your entity beans can help lessen the likelihood of deadlock. This means making sure
that the entity beans in your system are always accessed in the same exact order. In most cases, user applica-
tions are just too complicated to use this approach and more advanced configurations are needed.

5.4.6.3. Read-Only Beans

Entity beans can be marked as read-only. When a bean is marked as read-only, it never takes part in a transac-
tion. This means that it is never transactionally locked. Using commit-option D with this option is sometimes
very useful when your read-only bean's data is sometimes updated by an external source.

To mark a bean as read-only, use the read-only flag in the jboss.xml deployment descriptor.

Example 5.19. Marking an entity bean read-only using jboss.xml

<jboss>
<enterprise-beans>

<entity>
<ejb-name>MyEntityBean</ejb-name>
<jndi-name>MyEntityHomeRemote</jndi-name>
<read-only>True</read-only>

</entity>
</enterprise-beans>

</jboss>

5.4.6.4. Explicitly Defining Read-Only Methods

After reading and understanding the default locking behavior of entity beans, you're probably wondering, "Why
lock the bean if its not modifying the data?" JBoss allows you to define what methods on your entity bean are
read only so that it will not lock the bean within the transaction if only these types of methods are called. You
can define these read only methods within a jboss.xml deployment descriptor. Wildcards are allowed for
method names. The following is an example of declaring all getter methods and the anotherReadOnlyMethod as
read-only.

Example 5.20. Defining entity bean methods as read only

<jboss>
<enterprise-beans>

<entity>
<ejb-name>nextgen.EnterpriseEntity</ejb-name>
<jndi-name>nextgen.EnterpriseEntity</jndi-name>
<method-attributes>

<method>
<method-name>get*</method-name>
<read-only>true</read-only>

EJBs on JBoss

204

</method>
<method>

<method-name>anotherReadOnlyMethod</method-name>
<read-only>true</read-only>

</method>
</method-attributes>

</entity>
</enterprise-beans>

</jboss>

5.4.6.5. Instance Per Transaction Policy

The Instance Per Transaction policy is an advanced configuration that can totally wipe away deadlock and
throughput problems caused by JBoss's default locking policy. The default Entity Bean locking policy is to only
allow one active instance of a bean. The nstance Per Transaction policy breaks this requirement by allocating a
new instance of a bean per transaction and dropping this instance at the end of the transaction. Because each
transaction has its own copy of the bean, there is no need for transaction based locking.

This option does sound great but does have some drawbacks right now. First, the transactional isolation behavi-
or of this option is equivalent to READ_COMMITTED. This can create repeatable reads when they are not desired.
In other words, a transaction could have a copy of a stale bean. Second, this configuration option currently re-
quires commit-option B or C which can be a performance drain since an ejbLoad must happen at the beginning
of the transaction. But, if your application currently requires commit-option B or C anyways, then this is the
way to go. The JBoss developers are currently exploring ways to allow commit-option A as well (which would
allow the use of caching for this option).

JBoss has container configurations named Instance Per Transaction CMP 2.x EntityBean and Instance

Per Transaction BMP EntityBean defined in the standardjboss.xml that implement this locking policy. To use
this configuration, you just have to reference the name of the container configuration to use with your bean in
the jboss.xml deployment descriptor as show below.

Example 5.21. An example of using the Instance Per Transaction policy.

<jboss>
<enterprise-beans>

<entity>
<ejb-name>MyCMP2Bean</ejb-name>
<jndi-name>MyCMP2</jndi-name>
<configuration-name>

Instance Per Transaction CMP 2.x EntityBean
</configuration-name>

</entity>
<entity>

<ejb-name>MyBMPBean</ejb-name>
<jndi-name>MyBMP</jndi-name>
<configuration-name>

Instance Per Transaction BMP EntityBean
</configuration-name>

</entity>
</enterprise-beans>

</jboss>

5.4.7. Running Within a Cluster

Currently there is no distributed locking capability for entity beans within the cluster. This functionality has
been delegated to the database and must be supported by the application developer. For clustered entity beans,

EJBs on JBoss

205

it is suggested to use commit-option B or C in combination with a row locking mechanism. For CMP, there is a
row-locking configuration option. This option will use use a SQL select for update when the bean is loaded
from the database. With commit-option B or C, this implements a transactional lock that can be used across the
cluster. For BMP, you must explicity implement the select for update invocation within the BMP's ejbLoad

method.

5.4.8. Troubleshooting

This section will describe some common locking problems and their solution.

5.4.8.1. Locking Behavior Not Working

There are many emails on the the JBoss User email list which sometimes state that the locking is not working
and they are having concurrent access to their beans, and thus dirty reads. Here are some common reasons for
this:

• If you have custom container-configurations, make sure you have updated these configurations.

• Make absolutely sure that you have implemented equals and hashCode correctly from custom/complex
primary key classes.

• Make absolutely sure that your custom/complex primary key classes serialize correctly. One common mis-
take is assuming that member variable initializations will be executed when a primary key is unmarshalled.

5.4.8.2. IllegalStateException

An IllegalStateException with the message "removing bean lock and it has tx set!" usually means that you have
not implemented equals and/or hashCode correctly for your custom/complex primary key class, or that your
primary key class is not implemented correctly for serialization.

5.4.8.3. Hangs and Transaction Timeouts

One long outstanding bug of JBoss is that on a transaction timeout, that transaction is only marked for a roll-
back and not actually rolled back. This responsibility is delegated to the invocation thread. This can cause ma-
jor problems if the invocation thread hangs indefinitely since things like entity bean locks will never be re-
leased. The solution to this problem is not a good one. You really just need to avoid doing stuff within a trans-
action that could hang indefinitely. One common mistake is making connections across the internet or running
a web-crawler within a transaction.

EJBs on JBoss

206

6
Messaging on JBoss

JMS Configuration and Architecture

The JMS API stands for Java Message Service Application Programming Interface, and it is used by applica-
tions to send asynchronous business-quality messages to other applications. In the JMS world, messages are not
sent directly to other applications. Instead, messages are sent to destinations, also known as queues or topics.
Applications sending messages do not need to worry if the receiving applications are up and running, and con-
versely, receiving applications do not need to worry about the sending application's status. Both senders, and
receivers only interact with the destinations.

The JMS API is the standardized interface to a JMS provider, sometimes called a Message Oriented Middle-
ware (MOM) system. JBoss comes with a JMS 1.0.2b compliant JMS provider called JBoss Messaging or
JBossMQ. When you use the JMS API with JBoss, you are using the JBoss Messaging engine transparently.
JBoss Messaging fully implements the JMS specification; therefore, the best JBoss Messaging user guide is the
JMS specification. For more information about the JMS API please visit the JMS Tutorial or JMS Downloads
& Specifications.

This chapter focuses on the JBoss specific aspects of using JMS and message driven beans as well as the JBoss
Messaging configuration and MBeans.

6.1. JMS Examples

In this section we discuss the basics needed to use the JBoss JMS implementation. JMS leaves the details of ac-
cessing JMS connection factories and destinations as provider specific details. What you need to know to use
the JBoss Messaging layer is:

• The location of the javax.jms.QueueConnectionFactory and javax.jms.TopicConnectionFactory. In
JBoss both connection factory implementations are located under the JNDI name ConnectionFactory.

• How to lookup JMS destinations (javax.jmx.Queue and javax.jms.Topic). Destinations are configured
via MBeans as we will see when we discuss the messaging MBeans. JBoss comes with a few queues and
topics preconfigured. You can find them under the jboss.mq.destination domain in the JMX Console..

• The JBoss Messaging JARs. These include concurrent.jar, jbossmq-client.jar, jboss-com-

mon-client.jar, jboss-system-client.jar, jnp-client.jar, log4j.jar and jnet.jar (jnet.jar is
only needed for JDK 1.3)

In the following subsections we will look at examples of the various JMS messaging models and message driv-
en beans. The chapter example source is located under the src/main/org/jboss/chap6 directory of the book
examples.

6.1.1. A Point-To-Point Example

207

Let's start out with a point-to-point (P2P) example. In the P2P model, a sender delivers messages to a queue and
a single receiver pulls the message off of the queue. The receiver does not need to be listening to the queue at
the time the message is sent. Example 6.1 shows a complete P2P example that sends a javax.jms.TextMessage

to a the queue queue/testQueue and asynchronously receives the message from the same queue.

Example 6.1. A P2P JMS client example

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends a TextMessage to
* a Queue and asynchronously receives the message from the same
* Queue.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class SendRecvClient
{

static CountDown done = new CountDown(1);
QueueConnection conn;
QueueSession session;
Queue que;

public static class ExListener
implements MessageListener

{
public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text=" + tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPTP()
throws JMSException,

NamingException
{

InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
que = (Queue) iniCtx.lookup("queue/testQueue");
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

Messaging on JBoss

208

public void sendRecvAsync(String text)
throws JMSException,

NamingException
{

System.out.println("Begin sendRecvAsync");
// Setup the PTP connection, session
setupPTP();

// Set the async listener
QueueReceiver recv = session.createReceiver(que);
recv.setMessageListener(new ExListener());

// Send a text msg
QueueSender send = session.createSender(que);
TextMessage tm = session.createTextMessage(text);
send.send(tm);
System.out.println("sendRecvAsync, sent text=" + tm.getText());
send.close();
System.out.println("End sendRecvAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
SendRecvClient client = new SendRecvClient();
client.sendRecvAsync("A text msg");
client.done.acquire();
client.stop();
System.exit(0);

}
}

The client may be run using the following command line:

[nr@toki examples]$ ant -Dchap=chap6 -Dex=1p2p run-example
...
run-example1p2p:

[java] [INFO,SendRecvClient] Begin SendRecvClient, now=1098416473521
[java] [INFO,SendRecvClient] Begin sendRecvAsync
[java] [INFO,SendRecvClient] onMessage, recv text=A text msg
[java] [INFO,SendRecvClient] sendRecvAsync, sent text=A text msg
[java] [INFO,SendRecvClient] End sendRecvAsync
[java] [INFO,SendRecvClient] End SendRecvClient

6.1.2. A Pub-Sub Example

The JMS publish/subscribe (Pub-Sub) message model is a one-to-many model. A publisher sends a message to
a topic and all active subscribers of the topic receive the message. Subscribers that are not actively listening to
the topic will miss the published message. shows a complete JMS client that sends a javax.jms.TextMessage

to a topic and asynchronously receives the message from the same topic.

Example 6.2. A Pub-Sub JMS client example

package org.jboss.chap6.ex1;

Messaging on JBoss

209

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends a TextMessage to
* a Topic and asynchronously receives the message from the same
* Topic.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class TopicSendRecvClient
{

static CountDown done = new CountDown(1);
TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public static class ExListener implements MessageListener
{

public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text=" + tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String text)
throws JMSException, NamingException

{
System.out.println("Begin sendRecvAsync");
// Setup the PubSub connection, session
setupPubSub();
// Set the async listener

TopicSubscriber recv = session.createSubscriber(topic);
recv.setMessageListener(new ExListener());
// Send a text msg
TopicPublisher send = session.createPublisher(topic);

Messaging on JBoss

210

TextMessage tm = session.createTextMessage(text);
send.publish(tm);
System.out.println("sendRecvAsync, sent text=" + tm.getText());
send.close();
System.out.println("End sendRecvAsync");

}

public void stop() throws JMSException
{

conn.stop();
session.close();
conn.close();

}

public static void main(String args[]) throws Exception
{

System.out.println("Begin TopicSendRecvClient, now=" +
System.currentTimeMillis());

TopicSendRecvClient client = new TopicSendRecvClient();
client.sendRecvAsync("A text msg, now="+System.currentTimeMillis());
client.done.acquire();
client.stop();
System.out.println("End TopicSendRecvClient");
System.exit(0);

}

}

The client may be run using the following command line:

[nr@toki examples]$ ant -Dchap=chap6 -Dex=1ps run-example
...
run-example1ps:

[java] Begin TopicSendRecvClient, now=1098416563162
[java] Begin sendRecvAsync
[java] onMessage, recv text=A text msg, now=1098416563171
[java] sendRecvAsync, sent text=A text msg, now=1098416563171
[java] End sendRecvAsync
[java] End TopicSendRecvClient

Now let's break the publisher and subscribers into separate programs to demonstrate that subscribers only re-
ceive messages while they are listening to a topic. Example 6.3 shows a variation of the previous pub-sub client
that only publishes messages to the topic/testTopic topic. The subscriber only client is shown in
Example 6.3.

Example 6.3. A JMS publisher client

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSlistubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that sends a TextMessage to a Topic

Messaging on JBoss

211

*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class TopicSendClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendAsync(String text)
throws JMSException, NamingException

{
System.out.println("Begin sendAsync");
// Setup the pub/sub connection, session
setupPubSub();
// Send a text msg
TopicPublisher send = session.createPublisher(topic);
TextMessage tm = session.createTextMessage(text);
send.publish(tm);
System.out.println("sendAsync, sent text=" + tm.getText());
send.close();
System.out.println("End sendAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin TopicSendClient, now=" +

System.currentTimeMillis());
TopicSendClient client = new TopicSendClient();

client.sendAsync("A text msg, now="+System.currentTimeMillis());
client.stop();
System.out.println("End TopicSendClient");
System.exit(0);

}

}

Example 6.4. A JMS subscriber client

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;

Messaging on JBoss

212

import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that synchronously receives a message a Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class TopicRecvClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void recvSync()
throws JMSException, NamingException

{
System.out.println("Begin recvSync");
// Setup the pub/sub connection, session
setupPubSub();

// Wait upto 5 seconds for the message
TopicSubscriber recv = session.createSubscriber(topic);
Message msg = recv.receive(5000);
if (msg == null) {

System.out.println("Timed out waiting for msg");
} else {

System.out.println("TopicSubscriber.recv, msgt="+msg);
}

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin TopicRecvClient, now=" +

System.currentTimeMillis());
TopicRecvClient client = new TopicRecvClient();
client.recvSync();
client.stop();
System.out.println("End TopicRecvClient");
System.exit(0);

}

Messaging on JBoss

213

}

Run the TopicSendClient followed by the TopicRecvClient as follows:

[nr@toki examples]$ ant -Dchap=chap6 -Dex=1ps2 run-example
...
run-example1ps2:

[java] Begin TopicSendClient, now=1098416676618
[java] Begin sendAsync
[java] sendAsync, sent text=A text msg, now=1098416676621
[java] End sendAsync
[java] End TopicSendClient
[java] Begin TopicRecvClient, now=1098416683857
[java] Begin recvSync
[java] Timed out waiting for msg
[java] End TopicRecvClient

The output shows that the topic subscriber client (TopicRecvClient) fails to receive the message sent by the
publisher due to a timeout.

6.1.3. A Pub-Sub With Durable Topic Example

JMS supports a messaging model that is a cross between the P2P and pub-sub models. When a pub-sub client
wants to receive all messages posted to the topic it subscribes to even when it is not actively listening to the
topic, the client may achieve this behavior using a durable topic. Let's look at a variation of the preceding sub-
scriber client that uses a durable topic to ensure that it receives all messages, include those published when the
client is not listening to the topic. Example 6.5 shows the durable topic client with the key differences between
the Example 6.4 client highlighted in bold.

Example 6.5. A durable topic JMS client example

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that synchronously receives a message a Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class DurableTopicRecvClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

Messaging on JBoss

214

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");

TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection("john", "needle");
topic = (Topic) iniCtx.lookup("topic/testTopic");

session = conn.createTopicSession(false,
TopicSession.AUTO_ACKNOWLEDGE);

conn.start();
}

public void recvSync()
throws JMSException, NamingException

{
System.out.println("Begin recvSync");
// Setup the pub/sub connection, session
setupPubSub();
// Wait upto 5 seconds for the message
TopicSubscriber recv = session.createDurableSubscriber(topic, "chap6-ex1dtps");
Message msg = recv.receive(5000);
if (msg == null) {

System.out.println("Timed out waiting for msg");
} else {

System.out.println("DurableTopicRecvClient.recv, msgt=" + msg);
}

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin DurableTopicRecvClient, now=" +

System.currentTimeMillis());
DurableTopicRecvClient client = new DurableTopicRecvClient();
client.recvSync();
client.stop();
System.out.println("End DurableTopicRecvClient");
System.exit(0);

}

}

Now run the previous topic publisher with the durable topic subscriber as follows:

[nr@toki examples]$ ant -Dchap=chap6 -Dex=1psdt run-example
run-example1psdt:

[java] Begin DurableTopicSetup
[java] End DurableTopicSetup
[java] Begin TopicSendClient, now=1098420531772
[java] Begin sendAsync
[java] sendAsync, sent text=A text msg, now=1098420531775
[java] End sendAsync
[java] End TopicSendClient
[java] Begin DurableTopicRecvClient, now=1098420538269
[java] Begin recvSync
[java] DurableTopicRecvClient.recv, msgt=SpyTextMessage {
[java] Header {
[java] jmsDestination : TOPIC.testTopic.DurableSubscription[clientId=DurableSubscriberExample name=chap6-ex1dtps selector=null]
[java] jmsDeliveryMode : 2
[java] jmsExpiration : 0

Messaging on JBoss

215

[java] jmsPriority : 4
[java] jmsMessageID : ID:29-10984205372121
[java] jmsTimeStamp : 1098420537212
[java] jmsCorrelationID: null
[java] jmsReplyTo : null
[java] jmsType : null
[java] jmsRedelivered : false
[java] jmsProperties : {}
[java] jmsPropReadWrite: false
[java] msgReadOnly : true
[java] producerClientId: ID:29
[java] }
[java] Body {
[java] text :A text msg, now=1098420531775
[java] }
[java] }
[java] End DurableTopicRecvClient

Items of note for the durable topic example include:

• The TopicConnectionFactory creation in the durable topic client used a username and password, and the
TopicSubscriber creation was done using the createDurableSubscriber(Topic, String) method. This
is a requirement of durable topic subscribers. The messaging server needs to know what client is requesting
the durable topic and what the name of the durable topic subscription is. We will discuss the details of dur-
able topic setup in the configuration section.

• An org.jboss.chap6.DurableTopicSetup client was run prior to the TopicSendClient. The reason for
this is a durable topic subscriber must have registered a subscription at some point in the past in order for
the messaging server to save messages. JBoss supports dynamic durable topic subscribers and the Durab-

leTopicSetup client simply creates a durable subscription receiver and then exits. This leaves an active
durable topic subscriber on the topic/testTopic and the messaging server knows that any messages posted
to this topic must be saved for latter delivery.

• The TopicSendClient does not change for the durable topic. The notion of a durable topic is a subscriber
only notion.

• The DurableTopicRecvClient sees the message published to the topic/testTopic even though it was not
listening to the topic at the time the message was published.

6.1.4. A Point-To-Point With MDB Example

The EJB 2.0 specification added the notion of message driven beans (MDB). A MDB is a business component
that may be invoked asynchronously. As of the EJB 2.0 specification, JMS was the only mechanism by which
MDBs could be accessed. Example 6.6 shows an MDB that transforms the TextMessages it receives and sends
the transformed messages to the queue found in the incoming message JMSReplyTo header.

Example 6.6. A TextMessage processing MDB

package org.jboss.chap6.ex2;

import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.ejb.EJBException;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;

Messaging on JBoss

216

import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* An MDB that transforms the TextMessages it receives and send the
* transformed messages to the Queue found in the incoming message
* JMSReplyTo header.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class TextMDB
implements MessageDrivenBean, MessageListener

{
private MessageDrivenContext ctx = null;
private QueueConnection conn;
private QueueSession session;

public TextMDB()
{

System.out.println("TextMDB.ctor, this="+hashCode());
}

public void setMessageDrivenContext(MessageDrivenContext ctx)
{

this.ctx = ctx;
System.out.println("TextMDB.setMessageDrivenContext, this=" +

hashCode());
}

public void ejbCreate()
{

System.out.println("TextMDB.ejbCreate, this="+hashCode());
try {

setupPTP();
} catch (Exception e) {

throw new EJBException("Failed to init TextMDB", e);
}

}

public void ejbRemove()
{

System.out.println("TextMDB.ejbRemove, this="+hashCode());
ctx = null;
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch(JMSException e) {
e.printStackTrace();

}
}

public void onMessage(Message msg)
{

System.out.println("TextMDB.onMessage, this="+hashCode());
try {

TextMessage tm = (TextMessage) msg;
String text = tm.getText() + "processed by: "+hashCode();
Queue dest = (Queue) msg.getJMSReplyTo();
sendReply(text, dest);

} catch(Throwable t) {
t.printStackTrace();

}

Messaging on JBoss

217

}

private void setupPTP()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("java:comp/env/jms/QCF");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

private void sendReply(String text, Queue dest)
throws JMSException

{
System.out.println("TextMDB.sendReply, this=" +

hashCode() + ", dest="+dest);
QueueSender sender = session.createSender(dest);
TextMessage tm = session.createTextMessage(text);
sender.send(tm);
sender.close();

}
}

The MDB ejb-jar.xml and jboss.xml deployment descriptors are shown in Example 6.7.

Example 6.7. The MDB ejb-jar.xml descriptor

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>

<message-driven>
<ejb-name>TextMDB</ejb-name>
<ejb-class>org.jboss.chap6.ex2.TextMDB</ejb-class>
<transaction-type>Container</transaction-type>
<acknowledge-mode>AUTO_ACKNOWLEDGE</acknowledge-mode>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<res-ref-name>jms/QCF</res-ref-name>
<resource-ref>

<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

</enterprise-beans>
</ejb-jar>

Example 6.8. The MDB jboss.xml descriptor

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<message-driven>

<ejb-name>TextMDB</ejb-name>
<destination-jndi-name>queue/B</destination-jndi-name>
<resource-ref>

<res-ref-name>jms/QCF</res-ref-name>

Messaging on JBoss

218

<jndi-name>ConnectionFactory</jndi-name>
</resource-ref>

</message-driven>
</enterprise-beans>

</jboss>

Example 6.9 shows a variation of the P2P client that sends several messages to the queue/B destination and
asynchronously receives the messages as modified by TextMDB from queue A.

Example 6.9. A JMS client that interacts with the TextMDB

package org.jboss.chap6.ex2;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends N TextMessages to
* a Queue B and asynchronously receives the messages as modified by
* TextMDB from Queue A.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.10 $
*/

public class SendRecvClient
{

static final int N = 10;
static CountDown done = new CountDown(N);

QueueConnection conn;
QueueSession session;
Queue queA;
Queue queB;

public static class ExListener
implements MessageListener

{
public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text="+tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPTP()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");

Messaging on JBoss

219

QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
queA = (Queue) iniCtx.lookup("queue/A");
queB = (Queue) iniCtx.lookup("queue/B");
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String textBase)
throws JMSException, NamingException, InterruptedException

{
System.out.println("Begin sendRecvAsync");

// Setup the PTP connection, session
setupPTP();

// Set the async listener for queA
QueueReceiver recv = session.createReceiver(queA);
recv.setMessageListener(new ExListener());

// Send a few text msgs to queB
QueueSender send = session.createSender(queB);

for(int m = 0; m < 10; m ++) {
TextMessage tm = session.createTextMessage(textBase+"#"+m);
tm.setJMSReplyTo(queA);
send.send(tm);
System.out.println("sendRecvAsync, sent text="+tm.getText());

}
System.out.println("End sendRecvAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin SendRecvClient,now=" +

System.currentTimeMillis());
SendRecvClient client = new SendRecvClient();
client.sendRecvAsync("A text msg");
client.done.acquire();
client.stop();
System.exit(0);
System.out.println("End SendRecvClient");

}

}

Run the client as follows:

[nr@toki examples]$ ant -Dchap=chap6 -Dex=2 run-example
...
run-example2:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting 5 seconds for deploy...
[java] Begin SendRecvClient, now=1098419197580
[java] Begin sendRecvAsync
[java] onMessage, recv text=A text msg#0processed by: 13929978
[java] sendRecvAsync, sent text=A text msg#0
[java] sendRecvAsync, sent text=A text msg#1
[java] onMessage, recv text=A text msg#2processed by: 5495387

Messaging on JBoss

220

[java] sendRecvAsync, sent text=A text msg#2
[java] sendRecvAsync, sent text=A text msg#3
[java] onMessage, recv text=A text msg#1processed by: 13929978
[java] sendRecvAsync, sent text=A text msg#4
[java] sendRecvAsync, sent text=A text msg#5
[java] onMessage, recv text=A text msg#5processed by: 5495387
[java] sendRecvAsync, sent text=A text msg#6
[java] sendRecvAsync, sent text=A text msg#7
[java] onMessage, recv text=A text msg#4processed by: 13929978
[java] sendRecvAsync, sent text=A text msg#8
[java] sendRecvAsync, sent text=A text msg#9
[java] End sendRecvAsync
[java] onMessage, recv text=A text msg#3processed by: 15690844
[java] onMessage, recv text=A text msg#8processed by: 15690844
[java] onMessage, recv text=A text msg#7processed by: 13929978
[java] onMessage, recv text=A text msg#6processed by: 5495387
[java] onMessage, recv text=A text msg#9processed by: 14089812

The corresponding JBoss server console output is:

23:26:36,720 INFO [EjbModule] Deploying TextMDB
23:26:37,073 INFO [EJBDeployer] Deployed: file:/private/tmp/jboss-3.2.6/server/default/de
ploy/chap6-ex2.jar
23:26:43,216 INFO [TextMDB] TextMDB.ctor, this=13929978
23:26:43,224 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=13929978
23:26:43,299 INFO [TextMDB] TextMDB.ejbCreate, this=13929978
23:26:43,401 INFO [TextMDB] TextMDB.onMessage, this=13929978
23:26:43,408 INFO [TextMDB] TextMDB.sendReply, this=13929978, dest=QUEUE.A
23:26:43,494 INFO [TextMDB] TextMDB.onMessage, this=13929978
23:26:43,518 INFO [TextMDB] TextMDB.sendReply, this=13929978, dest=QUEUE.A
23:26:43,571 INFO [TextMDB] TextMDB.ctor, this=5495387
23:26:43,573 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=5495387
23:26:43,574 INFO [TextMDB] TextMDB.ejbCreate, this=5495387
23:26:43,596 INFO [TextMDB] TextMDB.onMessage, this=5495387
23:26:43,597 INFO [TextMDB] TextMDB.sendReply, this=5495387, dest=QUEUE.A
23:26:43,802 INFO [TextMDB] TextMDB.onMessage, this=13929978
23:26:43,803 INFO [TextMDB] TextMDB.sendReply, this=13929978, dest=QUEUE.A
23:26:43,825 INFO [TextMDB] TextMDB.onMessage, this=5495387
23:26:43,825 INFO [TextMDB] TextMDB.sendReply, this=5495387, dest=QUEUE.A
23:26:43,880 INFO [TextMDB] TextMDB.ctor, this=15690844
23:26:43,884 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=15690844
23:26:43,887 INFO [TextMDB] TextMDB.ejbCreate, this=15690844
23:26:43,944 INFO [TextMDB] TextMDB.onMessage, this=15690844
23:26:43,945 INFO [TextMDB] TextMDB.sendReply, this=15690844, dest=QUEUE.A
23:26:44,022 INFO [TextMDB] TextMDB.onMessage, this=13929978
23:26:44,022 INFO [TextMDB] TextMDB.sendReply, this=13929978, dest=QUEUE.A
23:26:44,041 INFO [TextMDB] TextMDB.onMessage, this=15690844
23:26:44,041 INFO [TextMDB] TextMDB.sendReply, this=15690844, dest=QUEUE.A
23:26:44,065 INFO [TextMDB] TextMDB.ctor, this=14089812
23:26:44,069 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=14089812
23:26:44,069 INFO [TextMDB] TextMDB.ejbCreate, this=14089812
23:26:44,200 INFO [TextMDB] TextMDB.onMessage, this=5495387
23:26:44,201 INFO [TextMDB] TextMDB.sendReply, this=5495387, dest=QUEUE.A
23:26:44,249 INFO [TextMDB] TextMDB.onMessage, this=14089812
23:26:44,250 INFO [TextMDB] TextMDB.sendReply, this=14089812, dest=QUEUE.A

Items of note in this example include:

• The JMS client has no explicit knowledge that it is dealing with an MDB. The client simply uses the stand-
ard JMS APIs to send messages to a queue and receive messages from another queue.

• The MDB declares whether it will listen to a queue or topic in the ejb-jar.xml descriptor. The name of the
queue or topic must be specified using a jboss.xml descriptor. In this example the MDB also sends mes-
sages to a JMS queue. MDBs may act as queue senders or topic publishers within their onMessage callback.

Messaging on JBoss

221

• The messages received by the client include a "processed by: NNN" suffix, where NNN is the hashCode

value of the MDB instance that processed the message. This shows that many MDBs may actively process
messages posted to a destination. Concurrent processing is one of the benefits of MDBs.

6.2. JBoss Messaging Overview

JBossMQ is composed of several services working together to provide JMS API level services to client applica-
tions. The services that make up the JBossMQ JMS implementation are introduced in this section.

6.2.1. Invocation Layer

The Invocation Layer (IL) services are responsible for handling the communication protocols that clients use to
send and receive messages. JBossMQ can support running different types of Invocation Layers concurrently.
All Invocation Layers support bidirectional communication which allows clients to send and receive messages
concurrently. ILs only handle the transport details of messaging. They delegate messages to the JMS server
JMX gateway service known as the invoker. This is similar to how the detached invokers expose the EJB con-
tainer via different transports.

Each IL service binds a JMS connection factory to a specific location in the JNDI tree. Clients choose the pro-
tocol they wish to use by the JNDI location used to obtain the JMS connection factory. JBossMQ currently has
six different invocation layers, and they are introduced in the following sections.

6.2.1.1. RMI IL (deprecated)

The first IL that was developed was based on Java's Remote Method Invocation (RMI). This is a robust IL
since it is based on standard RMI technology, but it has a high overhead compared to other ILs and will likely
be dropped in future releases.

NOTE: This IL will try to establish a TCP/IP socket from the server to the client. Therefore, clients that sit be-
hind firewalls or have security restrictions prohibiting the use of SeverSockets should not use this IL.

6.2.1.2. OIL IL (deprecated)

The next IL that was developed was the Optimized IL (OIL). The OIL uses a custom TCP/IP protocol and seri-
alization protocol that has very low overhead. This was the recommended socket based protocol until the addi-
tion of the UIL2 protocol.

NOTE: This IL will try to establish a TCP/IP socket from the server to the client. Therefore, clients that sit be-
hind firewalls or have security restrictions prohibiting the use of SeverSockets should not use this IL.

6.2.1.3. UIL IL (deprecated)

The Unified Invocation Layer (UIL) was developed to allow clients that cannot have a connection created from
the server back to the client due to firewall or other restrictions. It is almost identical to the OIL protocol except
that a multiplexing layer is used to provide the bidirectional communication. The multiplexing layer creates two
virtual sockets over one physical socket. This IL is slower than the OIL due to the higher overhead incurred by
the multiplexing layer. This invocation layer is now deprecated in favor of UIL2.

6.2.1.4. UIL2 IL

The Unified version 2 Invocation Layer (UIL2) is a variation of the UIL protocol that also uses a single socket

Messaging on JBoss

222

between the client and server. However, unlike all other socket based invocation layers like RMI, UIL and OIL
which use a blocking round-trip message at the socket level, the UIL2 protocol uses true asynchronous send
and receive messaging at the transport level. This provides for improved throughput and utilization and as such,
it is the preferred socket invocation layer.

6.2.1.5. JVM IL

The Java Virtual Machine (JVM) Invocation Layer was developed to cut out the TCP/IP overhead when the
JMS client is running in the same JVM as the server. This IL uses direct method calls for the server to service
the client requests. This increases efficiency since no sockets are created and there is no need for the associated
worker threads. This is the IL that should be used by Message Driven Beans (MDB) or any other component
that runs in the same virtual machine as the server such as servlets, MBeans, or EJBs.

6.2.1.6. HTTP IL

The HTTP Invocation Layer (HTTPIL) allows for accessing the JBossMQ service over the HTTP or HTTPS
protocols. This IL relies on the servlet deployed in the deploy/jms/jbossmq-httpil.sar to handle the http
traffic. This IL is useful for access to JMS through a firewall when the only port allowed requires HTTP.

6.2.2. Security Manager

The JBossMQ SecurityManager is the service that enforces an access control list to guard access to your destin-
ations. This subsystem works closely with the StateManager service.

6.2.3. Destination Manager

The DestinationManager can be thought as being the central service in JBossMQ. It keeps track of all the des-
tinations that have been created on the server. It also keeps track of the other key services such as the Mes-

sageCache, StateManager, and PersistenceManager.

6.2.4. Message Cache

Messages created in the server are passed to the MessageCache for memory management. JVM memory usage
goes up as messages are added to a destination that does not have any receivers. These messages are held in the
main memory until the receiver picks them up. If the MessageCache notices that the JVM memory usage starts
passing the defined limits, the MessageCache starts moving those messages from memory to persistent storage
on disk. The MessageCache uses a least recently used (LRU) algorithm to determine which messages should go
to disk.

6.2.5. State Manager

The StateManager (SM) is in charge of keeping track of who is allowed to log into the server and what their
durable subscriptions are.

6.2.6. Persistence Manager

The PersistenceManager (PM) is used by a destination to store messages marked as being persistent. JBoss-
MQ has several different implementations of the persistent manager, but only one can be enabled per server in-
stance. You should enable the persistence manager that best matches your requirements.

Messaging on JBoss

223

6.2.6.1. File PM

The File PM is a robust persistence manager that comes with JBossMQ. It creates separate directories for each
of the destination created on the server, and stores each persistent message as a separate file in the appropriate
directory. It has poor performance characteristics since it is frequently opening and closing files.

6.2.6.2. Rolling Logged PM

The Rolling Logged PM is also a file based persistence manager that has better performance than the File PM
because it stores multiple messages in one file, reducing the overhead of opening/closing multiple files. This is
a very fast PM but it is less transactionally reliable than the File PM due to its use of the FileOutput-

Stream.flush() method call. On some operating systems/JVMs the FileOutputStream.flush() method does
not guarantee that the data has been written to disk by the time the call returns.

6.2.6.3. JDBC2 PM

The JDBC2 PM is the second version of the original JDBC PM in JBossMQ 2.4.x. It has been substantially
simplified and improved. This PM allows you to store persistent messages to a relational database using JDBC.
The performance of this PM is directly related to the performance that can be obtained from the database. This
PM has a very low memory overhead compared to the other persistence managers. Furthermore it is also highly
integrated with the MessageCache to provide efficient persistence on a system that has a very active Mes-

sageCache.

6.2.7. Destinations

A destination is the object on the JBossMQ server that clients use to send and receive messages. There are two
types of destination objects, Queues and Topics. References to the destinations created by JBossMQ are stored
in JNDI.

6.2.7.1. Queues

Clients that are in the Point-to-Point paradigm typically use Queues. They expect that message sent to a Queue
will be receive by only one other client once and only once. If multiple clients are receiving messages from a
single queue, the messages will be load balanced across the receivers. Queue objects, by default, will be stored
under the JNDI queue/ sub context.

6.2.7.2. Topics

Topics are used in the publish-subscribe paradigm. When a client publishes a message to a topic, he expects
that a copy of the message will be delivered to each client that has subscribed to the topic. Topic messages are
delivered in the same manner a television show is delivered. Unless you have the TV on and are watching the
show, you will miss it. Similarly, if the client is not up, running and receiving messages from the topics, it will
miss messages published to the topic. To get around this problem of missing messages, clients can start a dur-
able subscription. This is like having a VCR record a show you cannot watch at its scheduled time so that you
can see what you missed when you turn your TV back on.

6.3. JBoss Messaging Configuration and MBeans

This section defines the MBean services that correspond to the components introduced in the previous section
along with their MBean attributes. The configuration and service files that make up the JBossMQ system in-

Messaging on JBoss

224

clude:

• conf/jbossmq-state.xml: the configuration file read by the org.jboss.mq.sm.file.DynamicStateManager

MBean. This is the default security store for the JMS valid username/passwords used to authenticate con-
nections, as well as the active durable topic subscriptions.

• deploy/jms/jbossmq-destinations-service.xml: This service describes defines default JMS queue and topic
destination configurations used by the testsuite unit tests. You can add/remove destinations to this file, or
deploy another *-service.xml descriptor with the destination configurations.

• deploy/jms/jbossmq-service.xml: This service descriptor configures the core JBossMQ MBeans like the
Invoker, SecurityManager, DynamicStateManager, and core interceptor stack. It also defines the MDB de-
fault dead letter queue DLQ.

• deploy/jms/jms-ra.rar: This is a JCA resource adaptor for JMS providers.

• deploy/jms/jms-ds.xml: This is a JCA connection factory and JMS provider MDB integration services con-
figuration which sets JBossMQ as the JMS provider.

• deploy/jms/hsqldb-jdbc2-service.xml: This service descriptor configures the DestinationManager, Mes-
sageCache, and jdbc2 PersistenceManager for hsqldb.

• deploy/jms/jvm-il-service.xml: This service descriptor configures the JVMServerILService which
provides the JVM IL transport.

• deploy/jms/oil-service.xml: This service descriptor configures the OILServerILService which provides
the OIL transport. The queue and topic connection factory for this IL is bound under the JNDI name Con-

nectionFactory.

• deploy/jms/oil2-service.xml: This is an experimental version OIL transport that should not be used. Re-
move this descriptor as it will be dropped in the next release.

• deploy/jms/rmi-il-service.xml: This service descriptor configures the RMIServerILService which
provides the RMI IL. The queue and topic connection factory for this IL is bound under the name RMICon-

nectionFactory.

• deploy/jms/uil2-service.xml: This service descriptor configures the UILServerILService which provides
the UIL2 transport. The queue and topic connection factory for this IL is bound under the name
UIL2ConnectionFactory as well as UILConnectionFactory to replace the deprecated version 1 UIL ser-
vice.

We will discuss the associated MBeans in the following subsections.

6.3.1. org.jboss.mq.il.jvm.JVMServerILService

The org.jboss.mq.il.jvm.JVMServerILService MBean is used to configure the JVM IL. The configurable
attributes are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass in-
coming requests to the JMS server. This attribute should be setup via a <depends optional-attrib-

ute-name="Invoker"> tag. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

Messaging on JBoss

225

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use
this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup
to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that
the connection is still valid. If this is set to zero, then no ping message will be sent. Since it is impossible
for JVM IL connection to go bad, it is recommended that you keep this set to 0.

6.3.2. org.jboss.mq.il.rmi.RMIServerILService (deprecated)

The org.jboss.mq.il.rmi.RMIServerILService is used to configure the RMI IL. The configurable attributes
are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass in-
coming requests to the JMS server. This attribute should be setup via a <depends optional-attrib-

ute-name="Invoker"> tag. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use
this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup
to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that
the connection is still valid. If this is set to zero, then no ping message will be sent.

6.3.3. org.jboss.mq.il.oil.OILServerILService (deprecated)

The org.jboss.mq.il.oil.OILServerILService is used to configure the OIL IL. The configurable attributes
are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass in-
coming requests to the JMS server. This attribute should be setup via a <depends optional-attrib-

ute-name="Invoker"> tag. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use
this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup
to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that
the connection is still valid. If this is set to zero, then no ping message will be sent.

• ReadTimeout: The period in milliseconds is passed onto as the SoTimeout value of the UIL2 socket. This
allows detection of dead sockets that are not responsive and are not capable of receiving ping messages.
Note that this setting should be longer in duration than the PingPeriod setting.

Messaging on JBoss

226

• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which means that a
random port will be chosen.

• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connection requests on one of its addresses.

• EnableTcpNoDelay: If set to true, then the TcpNoDelay option is enabled. This improves request response
times since TCP/IP packets are sent a soon as the request is flushed. Otherwise request packets may be buf-
fered by the operating system to create larger IP packets.

• ServerSocketFactory: The the javax.net.ServerSocketFactory implementation class name to use to cre-
ate the service java.net.ServerSocket. If not specified the default factory will be obtained from
javax.net.ServerSocketFactory.getDefault().

• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the client. If not
specified the default factory will be obtained from javax.net.SocketFactory.getDefault().

• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket factories. This is
the JNDI name of the security manager implementation as described for the security-domain element of
the jboss.xml and jboss-web.xml descriptors in Enabling Declarative Security in JBoss Revisited.

6.3.4. org.jboss.mq.il.uil.UILServerILService (deprecated)

The org.jboss.mq.il.uil.UILServerILService is used to configure the UIL IL. Note that this service has
been removed from the default distribution in JBoss 3.2.2, but an example configuration file can be found in the
docs/examples/jca directory.

The configurable attributes of the UILServerILService are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass in-
coming requests to the JMS server. This attribute should be setup via a <depends optional-attrib-

ute-name="Invoker"> tag. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use
this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup
to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that
the connection is still valid. If this is set to zero, then no ping message will be sent.

• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which means that a
random port will be chosen.

• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connection requests on one of its addresses.

• EnableTcpNoDelay: If set to true, then the TcpNoDelay option is enabled. This improves request response
times since TCP/IP packets are sent a soon as the request is flushed. Otherwise request packets may be buf-
fered by the operating system to create larger IP packets.

• ServerSocketFactory: The the javax.net.ServerSocketFactory implementation class name to use to cre-

Messaging on JBoss

227

ate the service java.net.ServerSocket. If not specified the default factory will be obtained from
javax.net.ServerSocketFactory.getDefault().

• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the client. If
not specified the default factory will be obtained from javax.net.SocketFactory.getDefault().

• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket factories. This is
the JNDI name of the security manager implementation as described for the security-domain element of
the jboss.xml and jboss-web.xml descriptors in Section 8.3.1.

6.3.5. org.jboss.mq.il.uil2.UILServerILService

The org.jboss.mq.il.uil2.UILServerILService is used to configure the UIL2 IL. The configurable attrib-
utes are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass in-
coming requests to the JMS server. This attribute should be setup via a <depends optional-attrib-

ute-name="Invoker"> tag. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use
this IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup
to use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that
the connection is still valid. If this is set to zero, then no ping message will be sent.

• ReadTimeout: The period in milliseconds is passed onto as the SoTimeout value of the UIL2 socket. This
allows detection of dead sockets that are not responsive and are not capable of receiving ping messages.
Note that this setting should be longer in duration than the PingPeriod setting.

• BufferSize: The size in bytes used as the buffer over the basic socket streams. This corresponds to the
java.io.BufferedOutputStream buffer size.

• ChunkSize: The size in bytes between stream listener notifications. The UIL2 layer uses the
org.jboss.util.stream.NotifyingBufferedOutputStream and NotifyingBufferedInputStream imple-
mentations that support the notion of a heartbeat that is triggered based on data read/written to the stream.
Whenever ChunkSize bytes are read/written to a stream. This allows serves as a ping or keepalive notifica-
tion when large reads or writes require a duration greater than the PingPeriod.

• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which means that a
random port will be chosen.

• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connection requests on one of its addresses.

• EnableTcpNoDelay: If set to true, then the TcpNoDelay option is enabled. This improves request response
times since TCP/IP packets are sent a soon as the request is flushed. Otherwise request packets may be buf-
fered by the operating system to create larger IP packets.

• ServerSocketFactory: The the javax.net.ServerSocketFactory implementation class name to use to cre-

Messaging on JBoss

228

ate the service java.net.ServerSocket. If not specified the default factory will be obtained from
javax.net.ServerSocketFactory.getDefault().

• ClientAddress: The address passed to the client as the address that should be used to connect to the server.

• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the client. If
not specified the default factory will be obtained from javax.net.SocketFactory.getDefault().

• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket factories. This is
the JNDI name of the security manager implementation as described for the security-domain element of
the jboss.xml and jboss-web.xml descriptors in Section 8.3.1.

6.3.5.1. Configuring ILs for SSL

The UIL2 and OIL services support the use of SSL through custom socket factories that integrate JSSE using
the security domain associated with the IL service. An example UIL2 service descriptor fragment that illus-
trates the use of the custom JBoss SSL socket factories is shown in Example 6.10.

Example 6.10. An example UIL2 config fragment for using SSL

<mbean code="org.jboss.mq.il.uil2.UILServerILService"
name="jboss.mq:service=InvocationLayer,type=HTTPSUIL2">
<depends optional-attribute-name="Invoker">jboss.mq:service=Invoker</depends>
<attribute name="ConnectionFactoryJNDIRef">SSLConnectionFactory</attribute>
<attribute name="XAConnectionFactoryJNDIRef">SSLXAConnectionFactory</attribute>

<!-- ... -->

<!-- SSL Socket Factories -->
<attribute name="ClientSocketFactory">

org.jboss.security.ssl.ClientSocketFactory
</attribute>
<attribute name="ServerSocketFactory">

org.jboss.security.ssl.DomainServerSocketFactory
</attribute>
<!-- Security domain - see below -->
<attribute name="SecurityDomain">java:/jaas/SSL</attribute>

</mbean>

<!-- Configures the keystore on the "SSL" security domain
This mbean is better placed in conf/jboss-service.xml where it
can be used by other services, but it will work from anywhere.
Use keytool from the sdk to create the keystore. -->

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=JaasSecurityDomain,domain=SSL">

<!-- This must correlate with the java:/jaas/SSL above -->
<constructor>

<arg type="java.lang.String" value="SSL"/>
</constructor>
<!-- The location of the keystore resource: loads from the

classpath and the server conf dir is a good default -->
<attribute name="KeyStoreURL">resource:uil2.keystore</attribute>
<attribute name="KeyStorePass">changeme</attribute>

</mbean>

6.3.5.2. JMS client properties for the UIL2 transport

There are several system properties that a JMS client using the UIL2 transport can set to control the client con-
nection back to the server

Messaging on JBoss

229

• org.jboss.mq.il.uil2.useServerHost: This system property allows a client to to connect to the server Inet-
Address.getHostName rather than theInetAddress.getHostAddress value. This will only make a differ-
ence if there different address to name resolution between the server and client environments.

• org.jboss.mq.il.uil2.localAddr: This system property allows a client to define the local interface to which
its sockets should be bound.

• org.jboss.mq.il.uil2.localPort: This system property allows a client to define the local port to which its
sockets should be bound

• org.jboss.mq.il.uil2.serverAddr: This system property allows a client to override the address to which it
attempts to connect to. This is useful for networks where NAT is ocurring between the client and JMS serv-
er.

• org.jboss.mq.il.uil2.serverPort: This system property allows a client to override the port to which it at-
tempts to connect. This is useful for for networks where port forwarding is ocurring between the client and
jms server.

• org.jboss.mq.il.uil2.retryCount: This system property controls the number of attempts to retry connecting
to the JMS server. Retries are only made for java.net.ConnectException failures. A value <= 0 means no
retry atempts will be made.

• org.jboss.mq.il.uil2.retryDelay: This system property controls the delay in milliseconds between retries
due to ConnectException failures.

6.3.6. org.jboss.mq.il.http.HTTPServerILService

The org.jboss.mq.il.http.HTTPServerILService is used to manage the HTTP/S IL. This IL allows for the
use of the JMS service over HTTP or HTTPS connections. The relies on the servlet deployed in the deploy/

jms/jbossmq-httpil.sar to handle the HTTP traffic. The configurable attributes are as follows:

• TimeOut: The default timeout in seconds that the client HTTP requests will wait for messages. This can be
overridden on the client by setting the system property org.jboss.mq.il.http.timeout to the number of
seconds.

• RestInterval: The number of seconds the client will sleep after each request. The default is 0, but you can
set this value in conjunction with the TimeOut value to implement a pure timed based polling mechanism.
For example, you could simply do a short lived request by setting the TimeOut value to 0 and then setting
the RestInterval to 60. This would cause the client to send a single non-blocking request to the server, re-
turn any messages if available, then sleep for 60 seconds, before issuing another request. Like the TimeOut

value, this can be explicitly overridden on a given client by specifying the
org.jboss.mq.il.http.restinterval with the number of seconds you wish to wait between requests.

• URL: Set the servlet URL. This value takes precedence over any individual values set (i.e. the URLPrefix,
URLSuffix, URLPort, etc.) It my be a actual URL or a property name which will be used on the client side to
resolve the proper URL by calling System.getProperty(propertyname). If not specified the URL will be
formed from URLPrefix + URLHostName + ":" + URLPort + "/" + URLSuffix.

• URLPrefix: The prefix portion of the servlet URL.

• URLHostName: The hostname portion of the servlet URL.

• URLPort: The port portion of the URL.

Messaging on JBoss

230

• URLSuffix: The trailing path portion of the URL.

• UseHostName: A flag that if set to true the default setting for the URLHostName attribute will be taken from
InetAddress.getLocalHost().getHostName(). If false the default setting for the URLHostName attribute
will be taken from InetAddress.getLocalHost().getHostAddress().

6.3.7. org.jboss.mq.server.jmx.Invoker

The org.jboss.mq.server.jmx.Invoker is used to pass IL requests down to the destination manager service
through an interceptor stack. The configurable attributes are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used by all the in-
terceptors to create the interceptor stack. The last interceptor in the chain should be the DestinationMan-

ager. This attribute should be setup via a <depends optional-attribute-name="NextInterceptor"> tag.

6.3.8. org.jboss.mq.server.jmx.InterceptorLoader

The org.jboss.mq.server.jmx.InterceptorLoader is used to load a generic interceptor and make it part of
the interceptor stack. This MBean is typically used to load custom interceptors like
org.jboss.mq.server.TracingInterceptor, which is can be used to efficiently log all client requests via
trace level log messages. The configurable attributes are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used by all the in-
terceptors to create the interceptor stack. The last interceptor in the chain should be the DestinationMan-

ager. This attribute should be setup via a <depends optional-attribute-name="NextInterceptor">

XML tag.

• InterceptorClass: The class name of the interceptor that will be loaded and made part of the interceptor
stack. This class specified here must extend the org.jboss.mq.server.JMSServerInterceptor class.

6.3.9. org.jboss.mq.sm.file.DynamicStateManager

The org.jboss.mq.sm.file.DynamicStateManager MBean is used as the default state manager assigned to the
DestinationManager service. It manages an XML user security store that provides the authentication, authoriza-
tion and durable subscriber information. The configurable attributes are as follows:

• StateFile: The file used to store state information such as created durable subscriptions. This is an XML file
that the server reads and writes data to, and the content model is shown in Figure 6.1. You should never edit
the XML file while the server is running. The default is the conf/jbossmq-state.xml file.

• User/Name: the username that corresponds to the Connection.createConnection(username, password)

method.

• User/Password: the password that corresponds to the Connection.createConnection(username, pass-

word) method.

• User/Id: the clientID that will be associated with the connection for the username. This limits the client to a
single active connection.

• DurableSubscriptions/DurableSubscription/ClientID: the unique client connection id associated with the

Messaging on JBoss

231

durable subscription.

• DurableSubscriptions/DurableSubscription/Name: the name of the durable subscription. This is the
value passed in as the name parameter to the TopicSession.createDurableSubscriber(Topic, name)

method.

• DurableSubscriptions/DurableSubscription/TopicName: the name of the Topic currently associated with
the durable subscription.

• HasSecurityManager: A boolean flag indicating whether the JAAS SecurityManager service has been
configured as part of the core JMS server interceptor stack. If false, this service performs that connection
authentication. The default is true.

Figure 6.1. The jbossmq-state.xml content model

6.3.10. org.jboss.mq.security.SecurityManager

If the org.jboss.mq.security.SecurityManager is part of the interceptor stack, then it will enforce the access
control lists assigned to the destinations. The SecurityManager uses JAAS, and as such requires that at applica-
tion policy be setup for in the JBoss login-config.xml file. The default configuration is shown below.

<application-policy name="jbossmq">
<authentication>

<login-module code="org.jboss.mq.sm.file.DynamicLoginModule"
flag="required">

<module-option name="unauthenticatedIdentity">guest</module-option>
<module-option name="sm.objectname">

jboss.mq:service=StateManager
</module-option>

</login-module>
</authentication>

</application-policy>

This integrates the DynamicStateManager jbossmq-state.xml security store into the JAAS based framework
through the org.jboss.mq.sm.file.DynamicLoginModule. The configuration also maps any unauthenticated
JBossMQ client to the guest role.

Messaging on JBoss

232

The configurable attributes of the SecurityManager are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used by all the in-
terceptors to create the interceptor stack. The last interceptor in the chain should be the DestinationMan-

ager. This attribute should be setup via a <depends optional-attribute-name="NextInterceptor"> tag.

• DefaultSecurityConfig: This element specifies the default security configuration settings for destinations.
This applies to temporary queues and topics as well as queues and topics that do not specifically specify a
security configuration. The content model of this element is shown in Figure 6.2.

Figure 6.2. The destination security config content model

• role: Each role that is allowed access to a destination is represented by a role element.

• role@name: The name attribute defines the name of the role.

• role@create: The create attribute is a true/false enum that indicates whether the role has the ability to cre-
ate durable subscriptions on the topic.

• role@read: The read attribute is a true/false enum that indicates whether the role can receive messages
from the destination.

• role@write: The write attribute is a true/false enum that indicates whether the role can send messages to
the destination.

• SecurityDomain: Specify the security domain name to use for authentication and role based authorization.
This is the JNDI name of the security manager implementation as described for the security-domain ele-
ment of the jboss.xml and jboss-web.xml descriptors in Section 8.3.1. Note however, that this attribute
value cannot have the standard java:/jaas prefix and that this prefix is currently an assumed and hard-
coded value.

You may be uncomfortable having to maintain your authentication and authorization information in an XML
file. You can use any standard security store such as a database or LDAP server by simply updating the JAAS
login-config.xml to provide the same username to password and user to role mappings as the DynamicState-

Manager. For example, to use a JDBC database, the following sample database tables and login-config.xml
entry would work.

Table 6.1. An example JMSPasswords username to password table

username password

jduke theduke

Table 6.2. An example JMSRoles username to acl roles table

Messaging on JBoss

233

username role

jduke create

jduke read

jduke write

Example 6.11. An alternate login-config.xml configuration for JBossMQ

<application-policy name="jbossmq">
<authentication>

<login-module
code="org.jboss.security.auth.spi.DatabaseServerLoginModule" flag="required">
<module-option name="unauthenticatedIdentity">guest </module-option>
<module-option name="dsJndiName">java:/DefaultDS </module-option>
<module-option name="principalsQuery"> select password from

JMSPasswords where username = ? </module-option>
<module-option name="rolesQuery"> select role, "Roles" from JMSRoles

where username= ? </module-option>
</login-module>

</authentication>
</application-policy>

For a complete description of the DatabaseServerLoginModule see Section 8.4.6.4.

6.3.11. org.jboss.mq.server.jmx.DestinationManager

The org.jboss.mq.server.jmx.DestinationManager must be the last interceptor in the interceptor stack. The
configurable attributes are as follows:

• PersistenceManager: The JMX ObjectName of the persistence manager service the server should use. This
attribute should be setup via a <depends optional-attribute-name="PersistenceManager"> XML tag.

• StateManager: The JMX ObjectName of the state manager service the server should use. This attribute
should be setup via a <depends optional-attribute-name="StateManager"> XML tag.

• MessageCache: The JMX ObjectName of the message cache service the server should use. This attribute
should be setup via a <depends optional-attribute-name="StateManager"> XML tag.

Additional read-only attributes and operations that support monitoring include:

• ClientCount: The number of clients connected to the server.

• Clients: A java.util.Map<org.jboss.mq.ConnectionToken, org.jboss.mq.server.ClientConsumer>

instances for the clients connected to the server.

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for a
JMS destination.

• String listMessageCounter(): This operation generates an HTML table that contains:

• Type: Either Queue or Topic indicating the destination type.

Messaging on JBoss

234

• Name: The name of the destination.

• Subscription: The subscription ID for a topic.

• Durable: A boolean indicating if the topic subscription is durable.

• Count: The number of message delivered to the destination.

• CountDelta: The change in message count since the previous access of count.

• Depth: The number of messages in the destination.

• DepthDelta: The change in the number of messages in the destination since the previous access of
depth.

• Last Add: The date/time string in DateFormat.SHORT/DateFormat.MEDIUM format of the last time a
message was added to the destination.

• void resetMessageCounter(): This zeros all destination counts and last added times.

6.3.12. org.jboss.mq.server.MessageCache

The server determines when to move messages to secondary storage by using the
org.jboss.mq.server.MessageCache MBean. The configurable attributes are as follows:

• CacheStore: The JMX ObjectName of the service that will act as the cache store. The cache store is used by
the MessageCache to move messages to persistent storage. The value you set here typically depends on the
type of persistence manager you are using. This attribute should be setup via a <depends optional-at-

tribute-name="CacheStore"> XML tag.

• HighMemoryMark: The amount of JVM heap memory in megabytes that must be reached before the Mes-

sageCache starts to move messages to secondary storage.

• MaxMemoryMark: The maximum amount of JVM heap memory in megabytes that the MessageCache

considers to be the max memory mark. As memory usage approaches the max memory mark, the Mes-

sageCache will move messages to persistent storage so that the number of messages kept in memory ap-
proaches zero.

Additional read-only cache attribute that provide statistics include:

• CacheHits: The number of times a message was requested and it was found to be in memory.

• CacheMisses: The number of times a message was requested and it was not found in memory so a read
from persistent storage was required to retrieve the message.

• HardRefCacheSize: The number of messages the cache forcing to stay inn memory by using a hard refer-
ence.

• SoftRefCacheSize: The number of messages the cache has persisted but is still lingering around in memory
as soft references due to the garbage collector not being eager to free up space.

• TotalCacheSize: The total number of messages that are being managed by the cache.

Messaging on JBoss

235

6.3.13. org.jboss.mq.pm.file.CacheStore

The org.jboss.mq.pm.file.CacheStore MBean should be used as the cache store for the MessageCache ser-
vice when you are using the File or Rolling Logged PM. The configurable attributes are as follows:

• DataDirectory: The directory used to store messages for the MessageCache.

6.3.14. org.jboss.mq.pm.file.PersistenceManager

The org.jboss.mq.pm.file.PersistenceManager should be used as the Persistence Manager assigned to the
DestinationManager if you wish to use the File PM. The configurable attributes are as follows:

• MessageCache: The JMX ObjectName of the MessageCache that has been assigned to the DestinationMan-

ager. This attribute should be setup via a <depends optional-attribute-name="MessageCache"> XML
tag.

• DataDirectory: The directory used to store persistent messages.

6.3.15. org.jboss.mq.pm.rollinglogged.PersistenceManager

The org.jboss.mq.pm.rollinglogged.PersistenceManager should be used as the PersistenceManager as-
signed to the DestinationManager if you wish to use the Rolling Logged PM. The configurable attributes are
as follows:

• DataDirectory: The directory used to store persistent messages.

• RollOverSize: The maximum number of messages until log rolls over.

6.3.16. org.jboss.mq.pm.jdbc2.PersistenceManager

The org.jboss.mq.pm.jdbc.PersistenceManager should be used as the persistence manager assigned to the
DestinationManager if you wish to store messages in a database. This PM has been tested against the Hyper-
sonSQL, MS SQL, Oracle, MySQL and Postgres databases. The configurable attributes are as follows:

• MessageCache: The JMX ObjectName of the MessageCache that has been assigned to the DestinationMan-

ager. This attribute should be setup via a <depends optional-attribute-name="MessageCache"> XML
tag.

• ConnectionManager: The JMX ObjectName of the JCA data source that will be used to obtain JDBC con-
nections. This attribute should be setup via a <depends optional-attribute-name="DataSource"> XML
tag. You may also need to add another <depends> XML tag to wait for the data source datasource connec-
tion manager service to be started before this PM is started.

• ConnectionRetryAttempts: An integer count used to allow the PM to retry attempts at getting a connec-
tion to the JDBC store. There is a 1500 millisecond delay between each connection failed connection at-
tempt and the next attempt. This must be greater than or equal to 1 and defaults to 5.

• SqlProperties: A property list is used to define the SQL Queries and other JDBC2 Persistence Manager op-
tions. You will need to adjust these properties if you which to run against another database other than Hy-
personicSQL. Example 6.12 shows default setting for this attribute for the Hypersonic DB, while Ex-

Messaging on JBoss

236

ample 6.13 shows an alternate setting for Oracle. Additional examples can be found in the docs/ex-

amples/jms directory of the distribution.

Example 6.12. Default JDBC2 PeristenceManager SqlProperties

<attribute name="SqlProperties">
BLOB_TYPE=OBJECT_BLOB
INSERT_TX = INSERT INTO JMS_TRANSACTIONS (TXID) values(?)
INSERT_MESSAGE = INSERT INTO JMS_MESSAGES (MESSAGEID, DESTINATION,

MESSAGEBLOB, TXID, TXOP) VALUES(?,?,?,?,?)
SELECT_ALL_UNCOMMITED_TXS = SELECT TXID FROM JMS_TRANSACTIONS
SELECT_MAX_TX = SELECT MAX(TXID) FROM JMS_MESSAGES
SELECT_MESSAGES_IN_DEST = SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES \

WHERE DESTINATION=?
SELECT_MESSAGE = SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE \

MESSAGEID=? AND DESTINATION=?
MARK_MESSAGE = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE MESSAGEID=? AND \

DESTINATION=?
UPDATE_MESSAGE = UPDATE JMS_MESSAGES SET MESSAGEBLOB=? WHERE MESSAGEID=? AND \

DESTINATION=?
UPDATE_MARKED_MESSAGES = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE TXOP=?
UPDATE_MARKED_MESSAGES_WITH_TX = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE

TXOP=? AND TXID=?
DELETE_MARKED_MESSAGES_WITH_TX = DELETE FROM JMS_MESSAGES WHERE TXID IN \
(SELECT TXID FROM JMS_TRANSACTIONS) AND TXOP=?
DELETE_TX = DELETE FROM JMS_TRANSACTIONS WHERE TXID = ?
DELETE_MARKED_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXID=? AND TXOP=?
DELETE_MESSAGE = DELETE FROM JMS_MESSAGES WHERE MESSAGEID=? AND DESTINATION=?
CREATE_MESSAGE_TABLE = CREATE TABLE JMS_MESSAGES (MESSAGEID INTEGER NOT NULL, \

DESTINATION VARCHAR(255) NOT NULL, TXID INTEGER, TXOP CHAR(1), \
MESSAGEBLOB OBJECT, PRIMARY KEY (MESSAGEID, DESTINATION))

CREATE_TX_TABLE = CREATE TABLE JMS_TRANSACTIONS (TXID INTEGER)
</attribute>

Example 6.13. A sample JDBC2 PeristenceManager SqlProperties for Oracle

<attribute name="SqlProperties">
BLOB_TYPE=BINARYSTREAM_BLOB
INSERT_TX = INSERT INTO JMS_TRANSACTIONS (TXID) values(?)
INSERT_MESSAGE = INSERT INTO JMS_MESSAGES (MESSAGEID, DESTINATION, \

MESSAGEBLOB, TXID, TXOP) VALUES(?,?,?,?,?)
SELECT_ALL_UNCOMMITED_TXS = SELECT TXID FROM JMS_TRANSACTIONS
SELECT_MAX_TX = SELECT MAX(TXID) FROM JMS_MESSAGES
SELECT_MESSAGES_IN_DEST = SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES \

WHERE DESTINATION=?
SELECT_MESSAGE = SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE \

MESSAGEID=? AND DESTINATION=?
MARK_MESSAGE = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE MESSAGEID=? \

AND DESTINATION=?
UPDATE_MESSAGE = UPDATE JMS_MESSAGES SET MESSAGEBLOB=? WHERE MESSAGEID=? \

AND DESTINATION=?
UPDATE_MARKED_MESSAGES = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE TXOP=?
UPDATE_MARKED_MESSAGES_WITH_TX = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE \

TXOP=? AND TXID=?
DELETE_MARKED_MESSAGES_WITH_TX = DELETE FROM JMS_MESSAGES WHERE TXID IN \

(SELECT TXID FROM JMS_TRANSACTIONS) AND TXOP=?
DELETE_TX = DELETE FROM JMS_TRANSACTIONS WHERE TXID = ?
DELETE_MARKED_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXID=? AND TXOP=?
DELETE_MESSAGE = DELETE FROM JMS_MESSAGES WHERE MESSAGEID=? AND DESTINATION=?
CREATE_MESSAGE_TABLE = CREATE TABLE JMS_MESSAGES (MESSAGEID INTEGER NOT NULL, \

DESTINATION VARCHAR(255) NOT NULL, TXID INTEGER, TXOP CHAR(1), \
MESSAGEBLOB BLOB, PRIMARY KEY (MESSAGEID, DESTINATION))

Messaging on JBoss

237

CREATE_TX_TABLE = CREATE TABLE JMS_TRANSACTIONS (TXID INTEGER)
</attribute>

6.3.17. Destination MBeans

This section describes the destination MBeans used in the jbossmq-destinations-service.xml and jbossmq-ser-

vice.xml descriptors.

6.3.17.1. org.jboss.mq.server.jmx.Queue

The org.jboss.mq.server.jmx.Queue is used to define a Queue Destination on the JBossMQ server. The name

attribute of the JMX object name of this MBean is used to determine the destination name. For example, if the
JMX MBean begins with:

<mbean code="org.jboss.mq.server.jmx.Queue"
name="jboss.mq.destination:service=Queue,name=testQueue">

Then, the JMX object name is jboss.mq.destination:service=Queue,name=testQueue and the name of the
queue is "testQueue". The configurable attributes are as follows:

• DestinationManager: The JMX ObjectName of the destination manager service for the server. This attrib-
ute should be set via a <depends optional-attribute-name="DestinationManager"> XML tag.

• SecurityManager: The JMX ObjectName of the security manager service that is being used to validate cli-
ent requests. This attribute should be set via a <depends optional-attribute-name="SecurityManager">

XML tag.

• SecurityConf: This element specifies a XML fragment which describes the access control list to be used by
the SecurityManager to authorize client operations against the destination. The content model is the same
as for the SecurityManagerSecurityConf attribute.

• JNDIName: The location in JNDI to which the queue object will be bound. If this is not set it will default
to queue/queue-name.

• MaxDepth: The MaxDepth is an upper limit to the backlog of messages that can exist for a destination, and
if exceeded, attempts to add new messages will result in a org.jboss.mq.DestinationFullException. The
MaxDepth can still be exceeded in a number of situations, e.g. when a message is knacked back into the
queue. Also transactions performing read committed processing, look at the current size of queue, ignoring
any messages that may be added as a result of the current transaction or other transactions. This is because
we don't want the transaction to fail during the commit phase when the message is physically added to the
queue.

• MessageCounterHistoryDayLimit: Sets the destination message counter history day limit with a value < 0
indicating unlimited history, a 0 value disabling history, and a value > 0 giving the history days count.

Additional read-only attributes that provide statistics information include:

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for
this destination.

• QueueDepth: The current backlog of waiting messages.

Messaging on JBoss

238

• ReceiversCount: The number of receivers currently associated with the queue.

• ScheduledMessageCount: The number of messages waiting in the queue for their scheduled delivery time
to arrive.

• String listMessageCounter(): This operation generates an HTML table that contains:

• Type: Either Queue or Topic indicating the destination type.

• Name: The name of the destination.

• Subscription: The subscription ID for a topic.

• Durable: A boolean indicating if the topic subscription is durable.

• Count: The number of message delivered to the destination.

• CountDelta: The change in message count since the previous access of count.

• Depth: The number of messages in the destination.

• DepthDelta: The change in the number of messages in the destination since the previous access of
depth.

• Last Add: The date/time string in DateFormat.SHORT/DateFormat.MEDIUM format of the last time a
message was added to the destination.

• void resetMessageCounter(): This zeros all destination counts and last added times.

• String listMessageCounterHistory(): This operation display an HTML table showing the hourly message
counts per hour for each day of history.

• void resetMessageCounterHistory(): This operation resets the day history message counts.

6.3.17.2. org.jboss.mq.server.jmx.Topic

The org.jboss.mq.server.jmx.Topic is used to define a topic destination on the JBossMQ server. The name

attribute of the JMX object name of this MBean is used to determine the destination name. For example, if the
JMX MBean begins with:

<mbean code="org.jboss.mq.server.jmx.Topic"
name="jboss.mq.destination:service=Topic,name=testTopic">

Then, the JMX object name is jboss.mq.destination:service=Topic,name=testTopic and the name of the
topic is testTopic. The configurable attributes are as follows:

• DestinationManager: The JMX object name of the destination manager configured for the server. This at-
tribute should be setup via a <depends optional-attribute-name="DestinationManager"> XML tag.

• SecurityManager: The JMX object name of the security manager that is being used to validate client re-
quests. This attribute should be setup via a <depends optional-attribute-name="SecurityManager">

XML tag.

• SecurityConf: This element specifies a XML fragment which describes the access control list to be used by
the SecurityManager to authorize client operations against the destination. The content model is the same

Messaging on JBoss

239

as that for the SecurityManagerSecurityConf attribute.

• JNDIName: The location in JNDI to which the queue object will be bound. If this is not set it will default
to topic/topic-name.

• MaxDepth: The MaxDepth is an upper limit to the backlog of messages that can exist for a destination, and
if exceeded, attempts to add new messages will result in a org.jboss.mq.DestinationFullException. The
MaxDepth can still be exceeded in a number of situations, e.g. when a message is knacked back into the
queue. Also transactions performing read committed processing, look at the current size of queue, ignoring
any messages that may be added as a result of the current transaction or other transactions. This is because
we don't want the transaction to fail during the commit phase when the message is physically added to the
topic.

• MessageCounterHistoryDayLimit: Sets the destination message counter history day limit with a value < 0
indicating unlimited history, a 0 value disabling history, and a value > 0 giving the history days count.

Additional read-only attributes that provide statistics information include:

• AllMessageCount: The message count across all queue types associated with the topic.

• AllSubscriptionsCount: The count of durable and non-durable subscriptions.

• DurableMessageCount: The count of messages in durable subscription queues.

• DurableSubscriptionsCount: The count of durable subscribers.

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for
this destination.

• NonDurableMessageCount: The count on messages in non-durable subscription queues.

• NonDurableSubscriptionsCount: The count of non-durable subscribers.

• String listMessageCounter(): This operation generates an HTML table that contains

• Type: Either Queue or Topic indicating the destination type.

• Name: The name of the destination.

• Subscription: The subscription ID for a topic.

• Durable: A boolean indicating if the topic subscription is durable.

• Count: The number of message delivered to the destination.

• CountDelta: The change in message count since the previous access of count.

• Depth: The number of messages in the destination.

• DepthDelta: The change in the number of messages in the destination since the previous access of
depth.

• Last Add: The date/time string in DateFormat.SHORT/DateFormat.MEDIUM format of the last time a
message was added to the destination.

Messaging on JBoss

240

• void resetMessageCounter(): This zeros all destination counts and last added times.

• String listMessageCounterHistory(): This operation display an HTML table showing the hourly message
counts per hour for each day of history.

• void resetMessageCounterHistory(): This operation resets the day history message counts.

6.3.18. Administration Via JMX

JBossMQ statistics and several management functions are accessible via JMX. JMX can be accessed interact-
ively via a Web Application or programmatically via the JMX API. It is recommended that you use the ht-
tp://localhost:8080/jmx-console web application to get familiar with all the JBossMQ JMX MBeans running in-
side the server and how to invoke methods on those MBeans via the JMX Console. This section will outline the
most common runtime management tasks that administrators must perform.

6.3.18.1. Creating Queues At Runtime

Applications that require the dynamic creation of queues at runtime can use the Destination Manager's MBean
createQueue method: void createQueue(String name, String jndiLocation)

This method creates a queue with the given name and binds it in JNDI at the jndiLocation. Queues created via
this method exist until the server is restarted. To destroy a previously created Queue, you would issue a void

destroyQueue(String name)

6.3.18.2. Creating Topics At Runtime

Applications that require the dynamic creation of topics at runtime can use the Destination Manager's MBean
createTopic method: void createTopic(String name, String jndiLocation)

This method creates a topic with the given name and binds it in JNDI at the jndiLocation. Topics created via
this method exist until the server is restarted. To destroy a previously created Topic, you would issue a: void
destroyTopic(String name)

6.3.18.3. Managing a JBossMQ User IDs at Runtime

The org.jboss.mq.sm.file.DynamicStateManager's MBean can be used to add and remove user ids and roles
at runtime. To add a user id, you would use: void addUser(String name, String password, String clien-

tID)

This method creates a user id with the given name and password and configures him to have the given client-

ID. To remove a previously created user id, you would call the following method: void removeUser(String

name)

To manage the roles that the user ids belong to, you would use the following set of methods to create roles, re-
move roles, add users to roles, and remove users from roles:

• void addRole(String name)

• void removeRole(String name)

• void addUserToRole(String roleName, String user)

• void removeUserFromRole(String roleName, String user)

Messaging on JBoss

241

http://localhost:8080/jmx-console
http://localhost:8080/jmx-console

6.4. Specifying the MDB JMS Provider

Up to this point we have looked at the standard JMS client/server architecture. The JMS specification defines
an advanced set of interfaces that allow for concurrent processing of a destination's messages, and collectively
this functionality is referred to as application server facilities (ASF). Two of the interfaces that support concur-
rent message processing, javax.jms.ServerSessionPool and javax.jms.ServerSession, must be provided
by the application server in which the processing will occur. Thus, the set of components that make up the
JBossMQ ASF involves both JBossMQ components as well as JBoss server components. The JBoss server
MDB container utilizes the JMS service's ASF to concurrently process messages sent to MDBs.

The responsibilities of the ASF domains are well defined by the JMS specification and so we won't go into a
discussion of how the ASF components are implemented. Rather, we want to discuss how ASF components
used by the JBoss MDB layer are integrated using MBeans that allow either the application server interfaces, or
the JMS provider interfaces to be replaced with alternate implementations.

Let's start with the org.jboss.jms.jndi.JMSProviderLoader MBean. This MBean is responsible for loading
an instance of the org.jboss.jms.jndi.JMSProviderAdaptor interface into the JBoss server and binding it in-
to JNDI. The JMSProviderAdaptor interface is an abstraction that defines how to get the root JNDI context for
the JMS provider, and an interface for getting and setting the JNDI names for the Context.PROVIDER_URL for
the root InitialContext, and the QueueConnectionFactory and TopicConnectionFactory locations in the
root context. This is all that is really necessary to bootstrap use of a JMS provider. By abstracting this informa-
tion into an interface, alternate JMS ASF provider implementations can be used with the JBoss MDB container.
The org.jboss.jms.jndi.JBossMQProvider is the default implementation of JMSProviderAdaptor interface,
and provides the adaptor for the JBossMQ JMS provider. To replace the JBossMQ provider with an alternate
JMS ASF implementation, simply create an implementation of the JMSProviderAdaptor interface and config-
ure the JMSProviderLoader with the class name of the implementation. We'll see an example of this in the con-
figuration section.

In addition to being able to replace the JMS provider used for MDBs, you can also replace the
javax.jms.ServerSessionPool interface implementation. This is possible by configuring the class name of the
org.jboss.jms.asf.ServerSessionPoolFactory implementation using the
org.jboss.jms.asf.ServerSessionPoolLoader MBean PoolFactoryClass attribute. The default ServerSes-
sionPoolFactory factory implementation is the JBoss org.jboss.jms.asf.StdServerSessionPoolFactory

class.

6.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean

The JMSProviderLoader MBean service creates a JMS provider adaptor and binds it into JNDI. A JMS pro-
vider adaptor is a class that implements the org.jboss.jms.jndi.JMSProviderAdapter interface. It is used by
the message driven bean container to access a JMS service provider in a provider independent manner. The
configurable attributes of the JMSProviderLoader service are:

• ProviderName: A unique name for the JMS provider. This will be used to bind the JMSProviderAdapter

instance into JNDI under java:/<ProviderName> unless overriden by the AdapterJNDIName attribute.

• ProviderAdapterClass: The fully qualified class name of the org.jboss.jms.jndi.JMSProviderAdapter in-
terface to create an instance of. To use an alternate JMS provider like SonicMQ, one would create an imple-
mentation of the JMSProviderAdaptor interface that allows the administration of the InitialContext pro-
vider URL, and the locations of the QueueConnectionFactory and TopicConnectionFactory in JNDI.

• AdapterJNDIName: Specify the exact name into JNDI uner which the JMSProviderAdapter instance will

Messaging on JBoss

242

be bound.

• ProviderURL: The JNDI Context.PROVIDER_URL value to use when creating the JMS provider root Ini-
tialContext.

• QueueFactoryRef: The JNDI name under which the provider javax.jms.QueueConnectionFactory will
be bound.

• TopicFactoryRef: The JNDI name under which the javax.jms.TopicConnectionFactory will be bound.

Example 6.14. A JMSProviderLoader for accessing a remote JBossMQ server

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=RemoteJBossMQProvider">

<attribute name="ProviderName">RemoteJMSProvider</attribute>
<attribute name="ProviderUrl">jnp://remotehost:1099</attribute>
<attribute name="ProviderAdapterClass">

org.jboss.jms.jndi.JBossMQProvider
</attribute>
<attribute name="QueueFactoryRef">XAConnectionFactory</attribute>
<attribute name="TopicFactoryRef">XAConnectionFactory</attribute>

</mbean>

The RemoteJMSProvider can be referenced on the mdb invoker config as shown in the jboss.xml fragment
given in Example 6.15.

Example 6.15. A jboss.xml fragment for specifying the MDB JMS provider adaptor

<proxy-factory-config>
<JMSProviderAdapterJNDI>RemoteJMSProvider</JMSProviderAdapterJNDI>
<ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
<MaximumSize>15</MaximumSize>
<MaxMessages>1</MaxMessages>
<MDBConfig>

<ReconnectIntervalSec>10</ReconnectIntervalSec>
<DLQConfig>

<DestinationQueue>queue/DLQ</DestinationQueue>
<MaxTimesRedelivered>10</MaxTimesRedelivered>
<TimeToLive>0</TimeToLive>

</DLQConfig>
</MDBConfig>

</proxy-factory-config>

Incidently, because one can specify multiple invoker-proxy-binding elements, this allows an MDB to listen
to the same queue/topic on multiple servers by configuring multiple bindings with different JMSProviderAd-
apterJNDI settings.

Alternatively, one can integrate the JMS provider using JCA configuration like that shown in Example 6.16.

Example 6.16. A jms-ds.xml descriptor for integrating a JMS provider adaptor via JCA

<tx-connection-factory>
<jndi-name>RemoteJmsXA</jndi-name>
<xa-transaction/>
<adapter-display-name>JMS Adapter</adapter-display-name>
<config-property name="JMSProviderAdapterJNDI"

Messaging on JBoss

243

type="java.lang.String">RemoteJMSProvider</config-property>
<config-property name="SessionDefaultType"

type="java.lang.String">javax.jms.Topic</config-property>

<security-domain-and-application>JmsXARealm</security-domain-and-application>
</tx-connection-factory>

6.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean

The ServerSessionPoolLoader MBean service manages a factory for javax.jms.ServerSessionPool objects
used by the message driven bean container. The configurable attributes of the ServerSessionPoolLoader ser-
vice are:

• PoolName: A unique name for the session pool. This will be used to bind the ServerSessionPoolFactory

instance into JNDI under java:/PoolName.

• PoolFactoryClass: The fully qualified class name of the org.jboss.jms.asf.ServerSessionPoolFactory

interface to create an instance of.

• XidFactory: The JMX ObjectName of the service to use for generating javax.transaction.xa.Xid values
for local transactions when two phase commit is not required. The XidFactory MBean must provide an In-

stance operation which returns a org.jboss.tm.XidFactoryMBean instance.

6.4.3. Integrating non-JBoss JMS Providers

We have mentioned that one can replace the JBossMQ JMS implementation with a foreign implementation.
Here we summarize the various approaches one can take to do the replacement:

• Replace the JMSProviderLoader JBossMQProvider class with one that instantiates the correct JNDI context
for communicating with the foreign JMS providers managed objects.

• Use the ExternalContext MBean to federate the foreign JMS providers managed objects into the JBoss
JNDI tree.

• Use MBeans to instantiate the foreign JMS objects into the JBoss JNDI tree. An example of this approach
can be found for Websphere MQ at ht-
tp://sourceforge.net/tracker/index.php?func=detail&aid=753022&group_id=22866&atid=376687

Messaging on JBoss

244

http://sourceforge.net/tracker/index.php?func=detail&aid=753022&group_id=22866&atid=376687
http://sourceforge.net/tracker/index.php?func=detail&aid=753022&group_id=22866&atid=376687

7
Connectors on JBoss

The JCA Configuration and Architecture

This chapter discusses the JBoss server implementation of the J2EE Connector Architecture (JCA). JCA is a re-
source manager integration API whose goal is to standardize access to non-relational resources in the same way
the JDBC API standardized access to relational data. The purpose of this chapter is to introduce the utility of
the JCA APIs and then describe the architecture of JCA in JBoss

7.1. JCA Overview

J2EE 1.3 contains a connector architecture (JCA) specification that allows for the integration of transacted and
secure resource adaptors into a J2EE application server environment. The full JCA specification is available
from the JCA home page, http://java.sun.com/j2ee/connector/. The JCA specification describes the notion of
such resource managers as Enterprise Information Systems (EIS). Examples of EIS systems include enterprise
resource planning packages, mainframe transaction processing, non-Java legacy applications, etc.

The reason for focusing on EIS is primarily because the notions of transactions, security, and scalability are re-
quirements in enterprise software systems. However, the JCA is applicable to any resource that needs to integ-
rate into JBoss in a secure, scalable and transacted manner. In this introduction we will focus on resource ad-
apters as a generic notion rather than something specific to the EIS environment.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the transaction,
security and connection management facilities of an application server with those of a resource manager. The
SPI defines the system level contract between the resource adaptor and the application server.

The connector architecture also defines a Common Client Interface (CCI) for accessing resources. The CCI is
targeted at EIS development tools and other sophisticated users of integrated resources. The CCI provides a
way to minimize the EIS specific code required by such tools. Typically J2EE developers will access a resource
using such a tool, or a resource specific interface rather than using CCI directly. The reason is that the CCI is
not a type specific API. To be used effectively it must be used in conjunction with metadata that describes how
to map from the generic CCI API to the resource manager specific data types used internally by the resource
manager.

The purpose of the connector architecture is to enable a resource vendor to provide a standard adaptor for its
product. A resource adaptor is a system-level software driver that is used by a Java application to connect to re-
source. The resource adaptor plugs into an application server and provides connectivity between the resource
manager, the application server, and the enterprise application. A resource vendor need only implement a JCA
compliant adaptor once to allow use of the resource manager in any JCA capable application server.

An application server vendor extends its architecture once to support the connector architecture and is then as-
sured of seamless connectivity to multiple resource managers. Likewise, a resource manager vendor provides
one standard resource adaptor and it has the capability to plug in to any application server that supports the con-
nector architecture.

245

http://java.sun.com/j2ee/connector/

Figure 7.1. The relationship between a J2EE application server and a JCA resource adaptor

Figure 7.1 illustrates that the application server is extended to provide support for the JCA SPI to allow a re-
source adaptor to integrate with the server connection pooling, transaction management and security manage-
ment facilities. This integration API defines a three part system contract.

• Connection management: a contract that allows the application server to pool resource connections. The
purpose of the pool management is to allow for scalability. Resource connections are typically expense ob-
jects to create and pooling them allows for more effective reuse and management.

• Transaction Management: a contract that allows the application server transaction manager to manage
transactions that engage resource managers.

• Security Management: a contract that enables secured access to resource managers.

The resource adaptor implements the resource manager side of the system contract. This entails using the ap-
plication server connection pooling, providing transaction resource information and using the security integra-
tion information. The resource adaptor also exposes the resource manager to the application server components.
This can be done using the CCI and/or a resource adaptor specific API.

The application component integrates into the application server using a standard J2EE container to component
contract. For an EJB component this contract is defined by the EJB specification. The application component
interacts with the resource adaptor in the same way as it would with any other standard resource factory, for ex-
ample, a javax.sql.DataSource JDBC resource factory. The only difference with a JCA resource adaptor is
that the client has the option of using the resource adaptor independent CCI API if the resource adaptor sup-
ports this.

Figure 7.2 (from the JCA 1.0 specification) illustrates the relationship between the JCA architecture parti-

Connectors on JBoss

246

cipants in terms of how they relate to the JCA SPI, CCI and JTA packages.

Figure 7.2. The JCA 1.0 specification class diagram for the connection management architecture.

The JBossCX architecture provides the implementation of the application server specific classes. Figure 7.2
shows that this comes down to the implementation of the javax.resource.spi.ConnectionManager and
javax.resource.spi.ConnectionEventListener interfaces. The key aspects of this implementation are dis-
cussed in the following section on the JBossCX architecture.

7.2. An Overview of the JBossCX Architecture

The JBossCX framework provides the application server architecture extension required for the use of JCA re-
source adaptors. This is primarily a connection pooling and management extension along with a number of
MBeans for loading resource adaptors into the JBoss server. Figure 7.3 expands the generic view given by Fig-
ure 7.2 to illustrate how the JBoss JCA layer implements the application server specific extension along with an
example file system resource adaptor that we will look at latter in this chapter.

Connectors on JBoss

247

Figure 7.3. The JBoss JCA implementation components

There are three coupled MBeans that make up a RAR deployment. These are the
org.jboss.resource.RARDeployment, org.jboss.resource.connectionmanager.RARDeployment, and
org.jboss.resource.connectionmanager.BaseConnectionManager2. The
org.jboss.resource.RARDeployment is simply an encapsulation of the metadata of a RAR META-INF/ra.xml

descriptor. It exposes this information as a DynamicMBean simply to make it available to the
org.jboss.resource.connectionmanager.RARDeployment MBean.

The RARDeployer service handles the deployment of archives files containing resource adaptors (RARs). It
creates the org.jboss.resource.RARDeployment MBeans when a RAR file is deployed. Deploying the RAR
file is the first step in making the resource adaptor available to application components. For each deployed
RAR, one or more connection factories must be configured and bound into JNDI. This task performed using a
JBoss service descriptor that sets up a org.jboss.resource.connectionmanager.BaseConnectionManager2

MBean implementation with a org.jboss.resource.connectionmgr.RARDeployment dependent.

7.2.1. BaseConnectionManager2 MBean

The org.jboss.resource.connectionmanager.BaseConnectionManager2 MBean is a base class for the vari-
ous types of connection managers required by the JCA spec. Subclasses include
(org.jboss.resource.connectionmanager) NoTxConnectionManager, LocalTxConnectionManager and XATx-

Connectors on JBoss

248

ConnectionManager. These correspond to resource adapators that support no transactions, local transaction and
XA transaction respectively. You choose which subclass to use based on the type of transaction semantics you
want, provided the JCA resource adaptor supports the corresponding transaction capability.

The common attributes supported by the BaseConnectionManager2 MBean are:

• ManagedConnectionFactoryName: This specifies the ObjectName of the MBean that creates
javax.resource.spi.ManagedConnectionFactory instances. Normally this is configured as an embedded
mbean in a depends element rather than a separate MBean reference using the RARDeployment MBean. The
MBean must provide an operation with the following signature:
javax.resource.spi.ManagedConnectionFactory startManagedConnectionFact-

ory(javax.resource.spi.ConnectionManager)

• ManagedConnectionPool: This specifies the ObjectName of the MBean representing the pool for this con-
nection manager. The MBean must have an ManagedConnectionPool attribute that is an implementation of
the org.jboss.resource.connectionmanager.ManagedConnectionPool interface. Normally it will be an
embedded MBean in a depends tag rather than an ObjectName reference to an existing MBean. The default
MBean for use is the org.jboss.resource.connectionmanager.JBossManagedConnectionPool. Its con-
figurable attributes are discussed below.

• CachedConnectionManager: This specifies the ObjectName of the
(org.jboss.resource.connectionmanager) CachedConnectionManager MBean implementation used by
the connection manager. Normally this will be a specified using a depends tag with the ObjectName of the
unique CachedConnectionManager for the server. The name
jboss.jca:service=CachedConnectionManager is the standard setting to use.

• SecurityDomainJndiName: This specifies the JNDI name of the security domain to use for authentication
and authorization of resource connections. This is typically of the form java:/jaas/<domain> where the
<domain> value is the name of an entry in the conf/login-config.xml JAAS login module configuration
file. This defines which JAAS login modules execute to perform authentication. Chapter 8 has more in-
formation on the security settings.

• JaasSecurityManagerService: This is the ObjectName of the security manager service. This should be set
to the security manager MBean name as defined in the conf/jboss-service.xml descriptor, and currently
this is jboss.security:service=JaasSecurityManager. This attribute will likely be removed in the future.

7.2.2. RARDeployment MBean

The org.jboss.resource.connectionmanager.RARDeployment MBean manages configuration and instanti-
ation ManagedConnectionFactory instance. It does this using the resource adaptor metadata settings from the
RAR META-INF/ra.xml descriptor along with the RARDeployment attributes. The configurable attributes are:

• OldRarDeployment: This is the ObjectName of the org.jboss.resource.RarDeployment MBean that con-
tains the resource adaptor metadata. The form of this name is
jboss.jca:service=RARDeployment,name=<ra-display-name> where the <ra-display-name> is the
ra.xml descriptor display-name attribute value. This is created by the RARDeployer when it deploys a RAR
file. This attribute will likely be removed in the future.

• ManagedConenctionFactoryProperties: This is a collection of (name, type, value) tripples that define at-
tributes of the ManagedConnectionFactory instance. Therefore, the names of the attributes depend on the
resource adaptor ManagedConnectionFactory instance. The following example shows the structure of the
content of this attribute.

Connectors on JBoss

249

<properties>
<config-property>

<config-property-name>Attr0Name</config-property-name>
<config-property-type>Attr0Type</config-property-type>
<config-property-value>Attr0Value</config-property-value>

</config-property>
<config-property>

<config-property-name>Attr1Name</config-property-name>
<config-property-type>Attr2Type</config-property-type>
<config-property-value>Attr2Value</config-property-value>

</config-property>
...

</properties>

AttrXName is the Xth attribute name, AttrXType is the fully qualified Java type of the attribute, and AttrX-

Value is the string representation of the value. The conversion from string to AttrXType is done using the
java.beans.PropertyEditor class for the AttrXType.

• JndiName: This is the JNDI name under which the will be made available. Clients of the resource adaptor
use this name to obtain either the javax.resource.cci.ConnectionFactory or resource adaptor specific
connection factory. The full JNDI name will be java:/<JndiName> meaning that the JndiName attribute
value will be prefixed with java:/. This prevents use of the connection factory outside of the JBoss server
VM. In the future this restriction may be configurable.

7.2.3. JBossManagedConnectionPool MBean

The org.jboss.resource.connectionmanager.JBossManagedConnectionPool MBean is a connection pooling
MBean. It is typically used as the embedded MBean value of the BaseConnectionManger2 ManagedConnec-

tionPool attribute. When you setup a connection manager MBean you typically embed the pool configuration
in the connection manager descriptor. The configurable attributes of the JBossManagedConnectionPool are:

• MinSize: This attribute indicates the minimum number of connections this pool should hold. These are not
created until a Subject is known from a request for a connection. MinSize connections will be created for
each sub-pool.

• MaxSize: This attribute indicates the maximum number of connections for a pool. No more than MaxSize
connections will be created in each sub-pool.

• BlockingTimeoutMillis: This attribute indicates the maximum time to blockwhile waiting for a connection
before throwing an exception. Note that this blocks only while waiting for a permit for a connection, and
will never throw an exception if creating a new connection takes an inordinately long time.

• IdleTiemoutMinutes: This attribute indicates the maximum time a connection may be idle before being
closed. The actual maximum time depends also on the idle remover thread scan time, which is 1/2 the smal-
lest idle timeout of any pool.

• NoTxSeperatePools: Setting this to true doubles the available pools. One pool is for connections used out-
side a transaction the other inside a transaction. The actual pools are lazily constructed on first use. This is
only relevent when setting the pool parameters associated with the LocalTxConnectionManager and XATx-

ConnectionManager. It's use case is for Oracle (and possibly other vendors) XA implementations that don't
like using an XA connection with and without a JTA transaction.

• Criteria: This attribute indicates if the JAAS javax.security.auth.Subject from security domain associ-
ated with the connection, or app supplied parameters (such as from getConnection(user, pw)) are used to

Connectors on JBoss

250

distinguish connections in the pool. The allowed values are:

• ByContainer: use Subject

• ByApplication: use app supplied params only

• ByContainerAndApplication: use both

• ByNothing: all connections are equivalent, usually if adapter supports reauthentication

7.2.4. CachedConnectionManager MBean

The org.jboss.resource.connectionmanager.CachedConnectionManager MBean manages associations
between meta-aware objects (those accessed through interceptor chains) and connection handles, as well as
between user transactions and connection handles. Normally there should only be one such MBean, and this is
configured in the core jboss-service.xml descriptor. It is used by
org.jboss.resource.connectionmanager.CachedConnectionInterceptor, JTA
javax.transaction.UserTransaction implementation, and all BaseConnectionManager2 instances. The con-
figurable attributes of the CachedConnectionManager MBean are:

• SpecCompliant: Enable this boolean attribute for spec compliant non-shareable connections reconnect pro-
cessing. This allows a connection to be opened in one call and used in another. Note that specifying this be-
havior disables connecion close processing.

• Debug: Enable this boolean property for connection close processing. At the completion of an EJB method
invocation, unclosed connections are registered with a transaction synchronization. If the transaction ends
without the connection being closed, an error is reported and JBoss closes the connection. This is a develop-
ment feature that should be turned off in production for optimal performance.

• TransactionManagerServiceName: This attribute specifies the JMX ObjectName of the JTA transaction
manager service. Connection close processing is now synchronized with the transaction manager and this
attribute specifies the transaction manager to use.

7.2.5. A Sample Skeleton JCA Resource Adaptor

To conclude our discussion of the JBoss JCA framework we will create and deploy a single non-transacted re-
source adaptor that simply provides a skeleton implementation that stubs out the required interfaces and logs all
method calls. We will not discuss the details of the requirements of a resource adaptor provider as these are dis-
cussed in detail in the JCA specification. The purpose of the adaptor is to demonstrate the steps required to cre-
ate and deploy a RAR in JBoss, and to see how JBoss interacts with the adaptor.

The adaptor we will create could be used as the starting point for a non-transacted file system adaptor. The
source to the example adaptor can be found in the src/main/org/jboss/chap7/ex1 directory of the book ex-
amples. A class diagram that shows the the mapping from the required javax.resource.spi interfaces to the
resource adaptor implementation is given in Figure 7.4.

Connectors on JBoss

251

Figure 7.4. The file system RAR class diagram

We will build the adaptor, deploy it to the JBoss server and then run an example client against an EJB that uses
the resource adaptor to demonstrate the basic steps in a complete context. We'll then take a look at the JBoss
server log to see how the JBoss JCA framework interacts with the resource adaptor to help you better under-
stand the components in the JCA system level contract.

To build the example and deploy the RAR to the JBoss server deploy/lib directory, execute the following Ant
command in the book examples directory.

[nr@toki]$ ant -Dchap=chap7 build-chap
Buildfile: build.xml

...
prepare:

[mkdir] Created dir: /Users/orb/proj/jboss/education/books/admin-devel/examples/output/chap7

chap7-ex1-rar:
[jar] Building jar: /Users/orb/proj/jboss/education/books/admin-devel/examples/output/chap7/ra.jar
[jar] Building jar: /Users/orb/proj/jboss/education/books/admin-devel/examples/output/chap7/chap7-ex1.rar

prepare:

chap7-ex1-jar:
[jar] Building jar: /Users/orb/proj/jboss/education/books/admin-devel/examples/output/chap7/chap7-ex1.jar

BUILD SUCCESSFUL

The deployed files include a chap7-ex1.sar and a notxfs-service.xml service descriptor. The example re-
source adaptor deployment descriptor is shown in Example 7.1 while the connection manager MBeans service
descriptor is shown in Example 7.2.

Example 7.1. The nontransactional file system resource adaptor deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connector PUBLIC

"-//Sun Microsystems, Inc.//DTD Connector 1.0//EN"
"http://java.sun.com/dtd/connector_1_0.dtd">

Connectors on JBoss

252

<connector>
<display-name>File System Adapter</display-name>
<vendor-name>JBoss Group</vendor-name>
<spec-version>1.0</spec-version>
<version>1.0</version>
<eis-type>FileSystem</eis-type>
<license>

<description>LGPL</description>
<license-required>false</license-required>

</license>
<resourceadapter>

<managedconnectionfactory-class>
org.jboss.chap7.ex1.ra.FSMangedConnectionFactory

</managedconnectionfactory-class>
<connectionfactory-interface>

org.jboss.chap7.ex1.ra.DirContextFactory
</connectionfactory-interface>

<connectionfactory-impl-class>
org.jboss.chap7.ex1.ra.DirContextFactoryImpl

</connectionfactory-impl-class>
<connection-interface>javax.naming.directory.DirContext</connection-interface>
<connection-impl-class>org.jboss.chap7.ex1.ra.FSDirContext</connection-impl-class>
<transaction-support>NoTransaction</transaction-support>
<config-property>

<config-property-name>FileSystemRootDir</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>/tmp/db/fs_store</config-property-value>

</config-property>
<config-property>

<config-property-name>UserName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value/>

</config-property>
<config-property>

<config-property-name>Password</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value/>

</config-property>
<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>

javax.resource.security.PasswordCredential
</credential-interface>

</authentication-mechanism>
<reauthentication-support>true</reauthentication-support>
<security-permission>

<description>
Read/Write access is required to the contents of the FileSystemRootDir

</description>
<security-permission-spec>permission java.io.FilePermission

"/tmp/db/fs_store/*", "read,write";</security-permission-spec>
</security-permission>

</resourceadapter>
</connector>

Example 7.2. The notxfs-ds.xml resource adaptor MBeans service descriptor.

<!-- The non-transaction FileSystem resource adaptor service configuration -->
<connection-factories>

<no-tx-connection-factory>
<jndi-name>NoTransFS</jndi-name>
<adapter-display-name>File System Adapter</adapter-display-name>
<config-property name="FileSystemRootDir"

type="java.lang.String">/tmp/db/fs_store</config-property>
</no-tx-connection-factory>

</connection-factories>

Connectors on JBoss

253

The key items in the resource adaptor deployment descriptor are highlighted in bold. These define the classes of
the resource adaptor, and the elements are:

• display-name: Recall from our discussion of the connection manager factory MBeans that the association
between the factory and the resource adaptor classes was done via a RARDeploymentDynamicMBean located
by name. The name was based on the display-name value found in the ra.xml descriptor. Here the name is
File System Adaptor. We will use it in the connection manager service descriptor.

• managedconnectionfactory-class: The implementation of the
javax.resource.spi.ManagedConnectionFactory interface,
org.jboss.chap7.ex1.ra.FSMangedConnectionFactory

• connectionfactory-interface: The interface that clients will obtain when they lookup the connection fact-
ory instance from JNDI, here a proprietary resource adaptor value,
org.jboss.chap7.ex1.ra.DirContextFactory

• connectionfactory-impl-class: The class that provides the implementation of the connectionfactory-inter-

face, org.jboss.chap7.ex1.ra.DirContextFactoryImpl

• connection-interface: The interface for the connections returned by the resource adpator connection fact-
ory, here the JNDI javax.naming.directory.DirContext interface.

• connection-impl-class: The class that provides the connection-interface implementation,
org.jboss.chap7.ex1.ra.FSDirContext

• transaction-support: The level of transaction support, here defined as NoTransaction, meaning the file
system resource adaptor does not do transactional work.

You can see the JCA 1.0 spec, or the book J2EE Connector Architecture and Enterprise Application Integra-
tion by Sharma, Stearns and Ng for the full details of the ra.xml descriptor elements.

The RAR classes and deployment descriptor only define a resource adaptor. To use the resource adaptor it must
be integrated into the JBoss application server. As we have discussed this is done with a connection factory
MBeans. A simplified descriptor format is available for configuring the JCA services of the application server,
and this is described below in Section 7.3.2. The notxfs-ds.xml descriptor shown in Example 7.2, and the fol-
lowing notes apply.

• The jndi-name element is used to specify where the connection factory will be bound into JNDI. For this
deployment that binding will be java:/NoTransFS.

• The adapter-display-name element specifies the same value as the ra.xmldisplay-name element. This is
how the JCA layer knows how to associate which RAR which this connection factory configuration.

• ManagedConnectionFactoryProperties may be specified using config-property elements to provide
non-default settings to the resource adaptor connection factory. Here the FileSystemRootDir of type
java.lang.String attribute is being set to /tmp/db/fs_store.

To deploy the RAR and connection manager configuration to the JBoss server, run the following:

[nr@toki examples]$ ant -Dchap=chap7 config
Buildfile: build.xml
...
config:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy

Connectors on JBoss

254

BUILD SUCCESSFUL

The server console will display some logging output indicating that the resource adaptor has been deployed.

Now we want to test access of the resource adaptor by a J2EE component. To do this we have created a trivial
stateless session bean that has a single method called echo. Inside of the echo method the EJB accesses the re-
source adaptor connection factory, creates a connection, and then immediately closes the connection. The echo

method code is shown in Example 7.3.

Example 7.3. The stateless session bean echo method code which shows the access of the resource adaptor
connection factory.

public String echo(String arg)
{

log.debug("echo, arg="+arg);
try {

InitialContext iniCtx = new InitialContext();
Context enc = (Context) iniCtx.lookup("java:comp/env");
Object ref = enc.lookup("ra/DirContextFactory");
log.debug("echo, ra/DirContextFactory="+ref);

DirContextFactory dcf = (DirContextFactory) ref;
log.debug("echo, found dcf="+dcf);
DirContext dc = dcf.getConnection();
log.debug("echo, lookup dc="+dc);

dc.close();
} catch(NamingException e) {

log.error("Failed during JNDI access", e);
}
return arg;

}

The EJB is not using the CCI interface to access the resource adaptor. Rather, it is using the resource adaptor
specific API based on the proprietary DirContextFactory interface that returns a JNDI DirContext object as
the connection object. The example EJB is simply exercising the system contract layer by looking up the re-
source adaptor connection factory, creating a connection to the resource and closing the connection. The EJB
does not actually do anything with the connection, as this would only exercise the resource adaptor implement-
ation since this is a non-transactional resource.

Run the test client which calls the EchoBean.echo method by running Ant as follows from the examples direct-
ory:

[nr@toki examples]$ ant -Dchap=chap7 -Dex=1 run-example
Buildfile: build.xml
...
run-example1:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for deploy...
[java] Created Echo
[java] Echo.echo('Hello') = Hello

BUILD SUCCESSFUL

Now let's look at the output that has been logged by the resource adaptor to understand the interaction between
the adaptor and the JBoss JCA layer. The output is in the server/default/log/server.log file of the JBoss
server distribution. We'll summarize the events seen in the log using a sequence diagram.

Connectors on JBoss

255

Those are the steps involved with making the resource adaptor connection factory available to application serv-
er components. The remaining log messages are the result of the example client invoking the EchoBean.echo

method and this method's interaction with the resource adaptor connection factory. Figure 7.5 is a sequence dia-
gram that summarizes the events that occur when the EchoBean accesses the resource adaptor connection fact-
ory from JNDI and creates a connection.

Figure 7.5. A sequence diagram illustrating the key interactions between the JBossCX framework and
the example resource adaptor that result when the EchoBean accesses the resource adaptor connection

factory.

The starting point is the client's invocation of the EchoBean.echo method. For the sake of conciseness of the
diagram, the client is shown directly invoking the EchoBean.echo method when in reality the JBoss EJB con-
tainer handles the invocation. There are three distinct interactions between the EchoBean and the resource ad-
aptor; the lookup of the connection factory, the creation of a connection, and the close of the connection.

The lookup of the resource adaptor connection factory is illustrated by the 1.1 sequences of events. The events
are:

• 1, the echo method invokes the getConnection method on the resource adaptor connection factory obtained
from the JNDI lookup on the java:comp/env/ra/DirContextFactory name which is a link to the
java:/NoTransFS location.

• 1.1, the DirContextFactoryImpl class asks its associated ConnectionManager to allocate a connection. It
passes in the ManagedConnectionFactory and FSRequestInfo that were associated with the DirContext-

FactoryImpl during its construction.

• 1.1.1, the ConnectionManager invokes its getManagedConnection method with the current Subject and
FSRequestInfo.

• 1.1.1.1, the ConnectionManager asks its object pool for a connection object. The JBossManagedConnec-

tionPool$BasePool is get the key for the connection and then asks the matching InternalPool for a con-
nection.

Connectors on JBoss

256

• 1.1.1.1.1, Since no connections have been created the pool must create a new connection. This is done by
requesting a new managed connection from the ManagedConnectionFactory. The Subject associated with
the pool as well as the FSRequestInfo data are passed as arguments to the createManagedConnection

method invocation.

• 1.1.1.1.1.1, the FSManagedConnectionFactory creates a new FSManagedConnection instance and passes in
the Subject and FSRequestInfo data.

• 1.1.1.2, a javax.resource.spi.ConnectionListener instance is created. The type of listener created is
based on the type of ConnectionManager. In this case it is an
org.jboss.resource.connectionmgr.BaseConnectionManager2$NoTransactionListener instance.

• 1.1.1.2.1, the listener registers as a javax.resource.spi.ConnectionEventListener with the ManagedCon-

nection instance created in 1.2.1.1.

• 1.1.2, the ManagedConnection is asked for the underlying resource manager connection. The Subject and
FSRequestInfo data are passed as arguments to the getConnection method invocation.

• The resulting connection object is cast to a javax.naming.directory.DirContext instance since this is the
public interface defined by the resource adaptor.

• After the EchoBean has obtained the DirContext for the resource adaptor, it simply closes the connection to
indicate its interaction with the resource manager is complete.

This concludes the resource adaptor example. Our investigation into the interaction between the JBossCX layer
and a trivial resource adaptor should give you sufficient understanding of the steps required to configure any re-
source adaptor. The example adaptor can also serve as a starting point for the creation of your own custom re-
source adaptors if you need to integrate non-JDBC resources into the JBoss server environment.

7.3. Configuring JCA Adaptors

Configuration of the JCA resource adaptors may be done by configuring the JBoss JCA services along with the
JCA resource adaptor as shown in the previous section. JBoss 3.2 provides an alternate simplified schema that
avoids having to specify so much redundant configuration information.

7.3.1. Configuring JDBC DataSources

The syntax for configuring JCA JDBC connection factories has been simplified in 3.2. Rather than configuring
the connection manager factory related MBeans discussed in the previous section via a mbean services deploy-
ment descriptor, an abbreviated datasource centric descriptor is used. This is transformed into the standard
jboss-service.xml MBean services deployment descriptor using a XSL transform applied by the
org.jboss.deployment.XSLSubDeployer included in the jboss-jca.sar deployment. The simplified configur-
ation descriptor is deployed the same as other deployable components. The descriptor must be named using a
*-ds.xml pattern in order to be recognized by the XSLSubDeployer.

The schema for the top-level datasource elements of the *-ds.xml configuration deployment file is shown in
Figure 7.6.

Connectors on JBoss

257

Figure 7.6. The simplified JCA DataSource configuration descriptor top-level schema elements

Multiple datasource configurations may be specified in a configuration deployment file. The child elements of
the datasources root are:

• mbean: Any number mbean elements may be specified to define MBean services that should be included in
the jboss-service.xml descriptor that results from the transformation. This may be used to configure ser-
vices used by the datasources.

• no-tx-datasource: this element is used to specify the (org.jboss.resource.connectionmanager) NoTx-

ConnectionManager service configuration. NoTxConnectionManager is a JCA connection manager with no
transaction support. The no-tx-datasource child element schema is given in Figure 7.7.

• local-tx-datasource: this element is used to specify the (org.jboss.resource.connectionmanager) Loc-

alTxConnectionManager service configuration. LocalTxConnectionManager implements a Connec-

tionEventListener that implements XAResource to manage transactions through the transaction manager.
To ensure that all work in a local transaction occurs over the same ManagedConnection, it includes a xid to
ManagedConnection map. When a Connection is requested or a transaction started with a connection handle
in use, it checks to see if a ManagedConnection already exists enrolled in the global transaction and uses it
if found. Otherwise, a free ManagedConnection has its LocalTransaction started and is used. The local-

tx-datasource child element schema is given in Figure 7.8

• xa-datasource: this element is used to specify the (org.jboss.resource.connectionmanager) XATxCon-

nectionManager service configuration. XATxConnectionManager implements a ConnectionEventListener

that obtains the XAResource to manage transactions through the transaction manager from the adaptor Man-
agedConnection. To ensure that all work in a local transaction occurs over the same ManagedConnection, it
includes a xid to ManagedConnection map. When a Connection is requested or a transaction started with a
connection handle in use, it checks to see if a ManagedConnection already exists enrolled in the global
transaction and uses it if found. Otherwise, a free ManagedConnection has its LocalTransaction started
and is used. The xa-datasource child element schema is given in Figure 7.9.

Connectors on JBoss

258

Figure 7.7. The non-transactional DataSource configuration schema

Connectors on JBoss

259

Figure 7.8. The non-XA DataSource configuration schema

Connectors on JBoss

260

Figure 7.9. The XADataSource configuration schema

Elements that are common to all datasources include:

• jndi-name: The JNDI name under which the DataSource wrapper will be bound. Note that this name is rel-
ative to the java:/ prefix. The full JNDI name of the DataSource will be java:/ + jndi-name. DataSource
wrappers are bound under the java:/ prefix since they are not usable outside of the server VM.

• application-managed-security: Specifying this element indicates that application code supplied paramet-
ers, such as from getConnection(user, pw), are used to distinguish connections in the pool.

• security-domain: Specifying this element indicates that either application code supplied parameters, or
JAAS Subject based information is to distinguish connections in the pool. The content of the security-do-

main is the name of the JAAS security manager that will handle authentication. This name correlates to the
JAAS login-config.xml descriptor application-policy/name attribute.

• min-pool-size: This element specifies the minimum number of connections a pool should hold. These pool
instances are not created until an initial request for a connection is made. This default to 0.

• max-pool-size: This element specifies the maximum number of connections for a pool. No more than the
max-pool-size number of connections will be created in a pool. This defaults to 20.

Connectors on JBoss

261

• blocking-timeout-millis: This element specifies the maximum time in milliseconds to block while waiting
for a connection before throwing an exception. Note that this blocks only while waiting for a permit for a
connection, and will never throw an exception if creating a new connection takes an inordinately long time.
The default is 5000.

• idle-timeout-minutes: This element specifies the maximum time in minutes a connection may be idle be-
fore being closed. The actual maximum time depends also on the IdleRemover scan time, which is 1/2 the
smallest idle-timeout-minutes of any pool.

• depends: The depends element specifies the JMX ObjectName string of a service that the connection man-
ager services depend on. The connection manager service will not be started until the dependent services
have been started.

Additional common child elements for both no-tx-datasource and local-tx-datasource include:

• connection-url: The JDBC driver connection URL string, for example, jd-

bc:hsqldb:hsql://localhost:1701.

• driver-class: The fully qualified name of the JDBC driver class, for example, org.hsqldb.jdbcDriver.

• connection-property: The connection-property element allows you to pass in arbitrary connection prop-
erties to the java.sql.Driver.connect(url, props) method. Each connection-property specifies a
string name/value pair with the property name coming from the name attribute and the value coming from
the element content.

• user-name: This element specifies the default username used when creating a new connection. The actual
username may be overridden by the application code getConnection parameters or the connection creation
context JAAS Subject.

• password: This element specifies the default password used when creating a new connection. The actual
password may be overridden by the application code getConnection parameters or the connection creation
context JAAS Subject.

Elements in common to the local-tx-datasource and xa-datasource are:

• transaction-isolation: This element specifies the java.sql.Connection transaction isolation level to use.
The constants defined in the Connection interface are the possible element content values and include:

• TRANSACTION_READ_UNCOMMITTED
• TRANSACTION_READ_COMMITTED
• TRANSACTION_REPEATABLE_READ
• TRANSACTION_SERIALIZABLE
• TRANSACTION_NONE

• new-connection-sql: A SQL statement that should be executed when a new connection is created. This can
be used to configure a connection with database specific settings not configurable via connection properties.

• check-valid-connection-sql: A SQL statement that should be run on a connection before it is returned from
the pool to test its validity. This allows for the dection of stale pool connections. An example statement
could be "select count(*) from x".

• exception-sorter-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ExceptionSorter interface to filter SQLExceptions as to whether or
not a connection error event should be generated. Current implementations include:

Connectors on JBoss

262

• org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter

• valid-connection-checker-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ValidConnectionChecker interface to provide a SQLException is-

ValidConnection(Connection e) method that is called with a connection that is to be returned from the
pool to test its validity. This overrides the check-valid-connection-sql when present. Current imple-
mentations include:

• org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker

• track-statements: This boolean element specifies whether to check for unclosed statements when a con-
nection is returned to the pool. If true, a warning message is issued for each unclosed statement. If the log4j
category org.jboss.resource.adapter.jdbc.WrappedConnection has trace level enabled, a stack trace of
the connection close call is logged as well. This is a debug feature that can be turned off in production.

• prepared-statement-cache-size: This element specifies the number of prepared statements per connection
in an LRU cache which is keyed by the SQL query. Setting this to zero disables the cache.

The unique xa-datasource child elements are:

• track-connection-by-tx: Specifying a true value for this element makes the connection manager keep an
xid to connection map and only put the connection back in the pool when the transaction completes and all
the connection handles are closed or disassociated (by the method calls returning). As a side effect, we nev-
er suspend and resume the xid on the connection's XAResource. This is the same connection tracking beha-
vior used for local transactions.

The XA spec implies that any connection may be enrolled in any transaction using any xid for that transac-
tion at any time from any thread (suspending other transactions if necessary). The original JCA implement-
ation assumed this and aggressively delisted connections and put them back in the pool as soon as control
left the EJB they were used in or handles were closed. Since some other transaction could be using the con-
nection the next time work needed to be done on the original transaction, there is no way to get the original
connection back. It turns out that most XADataSource driver vendors do not support this, and require that all
work done under a particular xid go through the same connection.

• xa-datasource-class: The fully qualified name of the javax.sql.XADataSource implementation class, for
example, com.informix.jdbcx.IfxXADataSource.

• xa-datasource-property: The xa-datasource-property element allows for specification of the properties
to assign to the XADataSource implementation class. Each property is identified by the name attribute and
the property value is given by the xa-datasource-property element content. The property is mapped onto
the XADataSource implementation by looking for a JavaBeans style getter method for the property name. If
found, the value of the property is set using the JavaBeans setter with the element text translated to the true
property type using the java.beans.PropertyEditor for the type.

• isSameRM-override-value: A boolean flag that allows one to override the behavior of the
javax.transaction.xa.XAResource.isSameRM(XAResource xaRes) method behavior on the XA managed
connection. If specified, this value is used unconditionally as the isSameRM(xaRes) return value regardless
of the xaRes parameter.

• no-tx-seperate-pools: The presence of this element indicates that two connection pools are required to isol-
ate connections used with JTA transaction from thoses used without a JTA transaction. The pools are lazily
constructed on first use. It's use case is for Oracle (and possibly other vendors) XA implementations that

Connectors on JBoss

263

don't like using an XA connection with and without a JTA transaction.

7.3.2. Configuring Generic JCA Adaptors

The XSLSubDeployer also supports the deployment of arbitrary non-JDBC JCA resource adaptors using an al-
ternate abbreviated syntax. The schema for the top-level connection factory elements of the *-ds.xml configur-
ation deployment file is shown in Figure 7.10.

Figure 7.10. The simplified JCA adaptor connection factory configuration descriptor top-level schema
elements

Multiple connection factory configurations may be specified in a configuration deployment file. The child ele-
ments of the connection-factories root are:

• mbean: Any number mbean elements may be specified to define MBean services that should be included in
the jboss-service.xml descriptor that results from the transformation. This may be used to configure ser-
vices used by the adaptor.

• no-tx-connection-factory: this element is used to specify the (org.jboss.resource.connectionmanager)
NoTxConnectionManager service configuration. NoTxConnectionManager is a JCA connection manager
with no transaction support. The no-tx-connection-factory child element schema is given in Figure 7.11.

• tx-connection-factory: this element is used to specify the (org.jboss.resource.connectionmanager) Tx-
ConnectionManager service configuration. The tx-connection-factory child element schema is given in
Figure 7.12.

Connectors on JBoss

264

Figure 7.11. The no-tx-connection-factory element schema

Connectors on JBoss

265

Figure 7.12. The tx-connection-factory element schema

The majority of the elements are the same as those of the datasources configuration. The element unique to the
connection factory configuration include:

• adaptor-display-name: A human readable display name to assign to the connection manager MBean.

Connectors on JBoss

266

• config-property: Any number of properties to supply to the ManagedConnectionFactory (MCF) MBean
service configuration. Each config-property element specifies the value of a MCF property. The config-

property element has two required attributes:

• name: The name of the property

• type: The fully qualified type of the property

• The content of the config-property element provides the string representation of the property value. This
will be converted to the true property type using the associated type PropertyEditor.

• local-transaction | xa-transaction: These element specify whether the tx-connection-factory supports
local transaction or XA transactions.

7.3.3. Sample Configurations

Example configurations of many third-party JDBC drivers is included in the JBOSS_DIST/docs/examples/jca

directory. Current example configurations include:

• asapxcess-jb3.2-ds.xml
• cicsr9s-service.xml
• db2-ds.xml
• db2-xa-ds.xml
• facets-ds.xml
• fast-objects-jboss32-ds.xml
• firebird-ds.xml
• firstsql-ds.xml
• firstsql-xa-ds.xml
• generic-ds.xml
• hsqldb-ds.xml
• informix-ds.xml
• informix-xa-ds.xml
• jdatastore-ds.xml
• jms-ds.xml
• jsql-ds.xml
• lido-versant-service.xml
• mimer-ds.xml
• mimer-xa-ds.xml
• msaccess-ds.xml
• mssql-ds.xml
• mssql-xa-ds.xml
• mysql-ds.xml
• oracle-ds.xml
• oracle-xa-ds.xml
• postgres-ds.xml
• sapdb-ds.xml
• sapr3-ds.xml
• solid-ds.xml
• sybase-ds.xml

Connectors on JBoss

267

8
Security on JBoss

J2EE Security Configuration and Architecture

Security is a fundamental part of any enterprise application. You need to be able to restrict who is allowed to
access your applications and control what operations application users may perform. The J2EE specifications
define a simple role-based security model for EJBs and web components. The JBoss component framework that
handles security is the JBossSX extension framework. The JBossSX security extension provides support for
both the role-based declarative J2EE security model as well as integration of custom security via a security
proxy layer. The default implementation of the declarative security model is based on Java Authentication and
Authorization Service (JAAS) login modules and subjects. The security proxy layer allows custom security that
cannot be described using the declarative model to be added to an EJB in a way that is independent of the EJB
business object. Before getting into the JBoss security implementation details, we will revie EJB and Servlet
specification security models as well as JAAS to establish the foundation for these details.

8.1. J2EE Declarative Security Overview

The security model advocated by the J2EE specification is a declarative model. It is declarative in that you de-
scribe the security roles and permissions using a standard XML descriptor rather than embedding security into
your business component. This isolates security from business-level code because security tends to be a more a
function of where the component is deployed, rather than an inherent aspect of the component's business logic.
For example, consider an ATM component that is to be used to access a bank account. The security require-
ments, roles and permissions will vary independent of how one accesses the bank account based on what bank
is managing the account, where the ATM machine is deployed, and so on.

Securing a J2EE application is based on the specification of the application security requirements via the stand-
ard J2EE deployment descriptors. You secure access to EJBs and web components in an enterprise application
by using the ejb-jar.xml and web.xml deployment descriptors. Figure 8.1 and Figure 8.2 illustrate the security-
related elements in the EJB 2.0 and Servlet 2.2 deployment descriptors, respectively.

268

Figure 8.1. A subset of the EJB 2.0 deployment descriptor content model that shows the security related
elements.

Security on JBoss

269

Figure 8.2. A subset of the Servlet 2.2 deployment descriptor content model that shows the security
related elements.

The purpose and usage of the various security elements given in Figure 8.1 and Figure 8.2 is discussed in the
following subsections.

8.1.1. Security References

Both EJBs and servlets may declare one or more security-role-ref elements. This element is used to declare
that a component is using the role-name value as an argument to the isCallerInRole(String) method. Using
the isCallerInRole method, a component can verify if the caller is in a role that has been declared with a se-

curity-role-ref/role-name element. The role-name element value must link to a security-role element
through the role-link element. The typical use of isCallerInRole is to perform a security check that cannot

Security on JBoss

270

be defined using the role based method-permissions elements. However, use of isCallerInRole is discour-
aged because this results in security logic embedded inside of the component code. Example descriptor frag-
ments that illustrate the security-role-ref element usage are presented in Example 8.4 and Example 8.5.

Example 8.1. An example ejb-jar.xml descriptor fragments which illustrate the security-role-ref element
usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<enterprise-beans>
<session>
<ejb-name>ASessionBean</ejb-name>
...
<security-role-ref>

<role-name>TheRoleICheck</role-name>
<role-link>TheApplicationRole</role-link>

</security-role-ref>
</session>

</enterprise-beans>
...

</ejb-jar>

Example 8.2. An example web.xml descriptor fragments which illustrate the security-role-ref element
usage.

<web-app>
<servlet>
<servlet-name>AServlet</servlet-name>
...
<security-role-ref>
<role-name>TheServletRole</role-name>
<role-link>TheApplicationRole</role-link>

</security-role-ref>
</servlet>
...

</web-app>

8.1.2. Security Identity

EJBs can optionally declare a security-identity element. New to EJB 2.0 is the capability to specify what
identity an EJB should use when it invokes methods on other components. The invocation identity can be that
of the current caller, or a specific role. The application assembler uses the security-identity element with a
use-caller-identity child element to indicate the current caller's identity should be propagated as the secur-
ity identity for method invocations made by the EJB. Propagation of the caller's identity is the default used in
the absence of an explicit security-identity element declaration.

Alternatively, the application assembler can use the run-as/role-name child element to specify that a specific
security role given by the role-name value should be used as the security identity for method invocations made
by the EJB. Note that this does not change the caller's identity as seen by EJBContext.getCallerPrincipal().
Rather, the caller's security roles are set to the single role specified by the run-as/role-name element value.
One use case for the run-as element is to prevent external clients from accessing internal EJBs. This is accom-
plished by assigning the internal EJB method-permission elements that restrict access to a role never assigned
to an external client. EJBs that need to use internal EJB are then configured with a run-as/role-name equal to
the restricted role. An example descriptor fragment that illustrates security-identity element usage is presen-
ted in Example 8.3.

Security on JBoss

271

Example 8.3. An example ejb-jar.xml descriptor fragment which illustrates the security-identity element
usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<enterprise-beans>
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<security-identity>

<use-caller-identity/>
</security-identity>

</session>
<session>

<ejb-name>RunAsBean</ejb-name>
<!-- ... -->
<security-identity>

<run-as>
<description>A private internal role</description>
<role-name>InternalRole</role-name>

</run-as>
</security-identity>

</session>
</enterprise-beans>
<!-- ... -->

</ejb-jar>

8.1.3. Security roles

The security role name referenced by either the security-role-ref or security-identity element needs to
map to one of the application's declared roles. An application assembler defines logical security roles by declar-
ing security-role elements. The role-name value is a logical application role name like Administrator, Archi-
tect, SalesManager, etc.

What is a role? The J2EE specifications note that it is important to keep in mind that the security roles in the
deployment descriptor are used to define the logical security view of an application. Roles defined in the J2EE
deployment descriptors should not be confused with the user groups, users, principals, and other concepts that
exist in the target enterprise's operational environment. The deployment descriptor roles are application con-
structs with application domain specific names. For example, a banking application might use role names like
BankManager, Teller, and Customer.

In JBoss, a security-role is only used to map security-role-ref/role-name values to the logical role that
the component role referenced. The user's assigned roles are a dynamic function of the application's security
manager, as you will see when we discuss the JBossSX implementation details. JBoss does not require the
definition of security-roles in order to declare method permissions. Therefore, the specification of secur-

ity-role elements is simply a good practice to ensure portability across application servers and for deployment
descriptor maintenance. Example descriptor fragments that illustrate security-role usage are presented in Ex-
ample 8.4 and Example 8.5.

Example 8.4. An example ejb-jar.xml descriptor fragments which illustrate the security-role element
usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<!-- ... -->
<assembly-descriptor>

Security on JBoss

272

<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>

</security-role>
</assembly-descriptor>

</ejb-jar>

Example 8.5. An example web.xml descriptor fragment which illustrate the security-role element usage.

<!-- A sample web.xml fragment -->
<web-app>

<!-- ... -->
<security-role>

<description>The single application role</description>
<role-name>TheApplicationRole</role-name>

</security-role>
</web-app>

8.1.4. EJB method permissions

An application assembler can set the roles that are allowed to invoke an EJB's home and remote interface meth-
ods through method-permission element declarations. Each method-permission element contains one or more
role-name child elements that define the logical roles allowed access the EJB methods as identified by method
child elements. As of EJB 2.0, you can now specify an unchecked element instead of the role-name element to
declare that any authenticated user can access the methods identified by method child elements. In addition,
you can declare that no one should have access to a method with the exclude-list element. If an EJB has
methods that have not been declared as accessible by a role using a method-permission element, the EJB
methods default to being excluded from use. This is equivalent to defaulting the methods into the exclude-

list.

There are three supported styles of method element declarations.

• Style 1 is used for referring to all of the home and component interface methods of the named enterprise
bean.

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

• Style 2 is used for referring to a specified method of the home or component interface of the named enter-
prise bean. If there are multiple methods with the same overloaded name, this style refers to all of the over-
loaded methods.

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

• Style 3 is used to refer to a specified method within a set of methods with an overloaded name. The method
must be defined in the specified enterprise bean's home or remote interface. The method-param element val-
ues are the fully qualified name of the corresponding method parameter type. If there are multiple methods

Security on JBoss

273

with the same overloaded signature, the permission applies to all of the matching overloaded methods.

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAMETER_1</method-param>
<!-- ... -->
<method-param>PARAMETER_N</method-param>

</method-params>
</method>

The optional method-intf element can be used to differentiate methods with the same name and signature that
are defined in both the home and remote interfaces of an enterprise bean. Example 8.6 provides examples of the
method-permission element usage.

Example 8.6. An example ejb-jar.xml descriptor fragment which illustrates the method-permission
element usage.

<ejb-jar>
<assembly-descriptor>

<method-permission>
<description>The employee and temp-employee roles may access any

method of the EmployeeService bean </description>
<role-name>employee</role-name>
<role-name>temp-employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<method-permission>

<description>The employee role may access the findByPrimaryKey,
getEmployeeInfo, and the updateEmployeeInfo(String) method of
the AardvarkPayroll bean </description>

<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</method-permission>
<method-permission>

<description>The admin role may access any method of the
EmployeeServiceAdmin bean </description>

<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<method-permission>

<description>Any authenticated user may access any method of the
EmployeeServiceHelp bean</description>

<unchecked/>
<method>

Security on JBoss

274

<ejb-name>EmployeeServiceHelp</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<exclude-list>

<description>No fireTheCTO methods of the EmployeeFiring bean may be
used in this deployment</description>

<method>
<ejb-name>EmployeeFiring</ejb-name>
<method-name>fireTheCTO</method-name>

</method>
</exclude-list>

</assembly-descriptor>
</ejb-jar>

8.1.5. Web Content Security Constraints

In a web application, security is defined by the roles allowed access to content by a URL pattern that identifies
the protected content. This set of information is declared using the web.xml security-constraint element.
The content to be secured is declared using one or more web-resource-collection elements. Each web-

resource-collection element contains an optional series of url-pattern elements followed by an optional
series of http-method elements. The url-pattern element value specifies a URL pattern against which a re-
quest URL must match for the request to correspond to an attempt to access secured content. The http-method

element value specifies a type of HTTP request to allow.

The optional user-data-constraint element specifies the requirements for the transport layer of the client to
server connection. The requirement may be for content integrity (preventing data tampering in the communica-
tion process) or for confidentiality (preventing reading while in transit). The transport-guarantee element value
specifies the degree to which communication between client and server should be protected. Its values are NONE,
INTEGRAL, or CONFIDENTIAL. A value of NONE means that the application does not require any transport guaran-
tees. A value of INTEGRAL means that the application requires the data sent between the client and server be sent
in such a way that it can't be changed in transit. A value of CONFIDENTIAL means that the application requires
the data be transmitted in a fashion that prevents other entities from observing the contents of the transmission.
In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use of SSL is required.

The optional login-config is used to configure the authentication method that should be used, the realm name
that should be used for this application, and the attributes that are needed by the form login mechanism. The
auth-method child element specifies the authentication mechanism for the web application. As a prerequisite to
gaining access to any web resources that are protected by an authorization constraint, a user must have authen-
ticated using the configured mechanism. Legal values for auth-method are BASIC, DIGEST, FORM, or CLIENT-

CERT. The realm-name child element specifies the realm name to use in HTTP basic and digest authorization.
The form-login-config child element specifies the log in as well as error pages that should be used in form-
based login. If the auth-method value is not FORM, form-login-config and its child elements are ignored.

As an example, the web.xml descriptor fragment given in Example 8.7 indicates that any URL lying under the
web application /restricted path requires an AuthorizedUser role. There is no required transport guarantee
and the authentication method used for obtaining the user identity is BASIC HTTP authentication.

Example 8.7. A web.xml descriptor fragment which illustrates the use of the security-constraint and
related elements.

<web-app>
<!-- ... -->
<security-constraint>

<web-resource-collection>

Security on JBoss

275

<web-resource-name>Secure Content</web-resource-name>
<url-pattern>/restricted/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>AuthorizedUser</role-name>
</auth-constraint>
<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>
<!-- ... -->
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>The Restricted Zone</realm-name>

</login-config>
<!-- ... -->
<security-role>

<description>The role required to access restricted content </description>
<role-name>AuthorizedUser</role-name>

</security-role>
</web-app>

8.1.6. Enabling Declarative Security in JBoss

The J2EE security elements that have been covered describe only the security requirements from the applica-
tion's perspective. Since J2EE security elements declare logical roles, the application deployer maps the roles
from the application domain onto the deployment environment. The J2EE specifications omit these application-serv-
er-specific details. In JBoss, mapping the application roles onto the deployment environment entails specifying
a security manager that implements the J2EE security model using JBoss server specific deployment
descriptors. We will avoid discussion the details of this step for now. The details behind the security configura-
tion will be discussed when we describe the generic JBoss server security interfaces in Section 8.3.

8.2. An Introduction to JAAS

The default implementation of the JBossSX framework is based on the JAAS API. It is important that you un-
derstand the basic elements of the JAAS API to understand the implementation details of JBossSX. This sec-
tion provides an introduction to JAAS to prepare you for the JBossSX architecture discussion. Additional de-
tails on the JAAS package can be found at the JAAS home page at: http://java.sun.com/products/jaas/.

8.2.1. What is JAAS?

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and authorization. It im-
plements a Java version of the standard Pluggable Authentication Module (PAM) framework and compatibly
extends the Java 2 Platform's access control architecture to support user-based authorization. JAAS was first re-
leased as an extension package for JDK 1.3 and is bundled with JDK 1.4+. Because the JBossSX framework
uses only the authentication capabilities of JAAS to implement the declarative role-based J2EE security model,
this introduction focuses on only that topic.

Much of this section's material is derived from the JAAS 1.0 Developers Guide, so if you are familiar with its
content you can skip ahead to the JBossSX architecture discussion in Section 8.4

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain independent
from underlying authentication technologies and allows the JBossSX security manager to work in different se-
curity infrastructures. Integration with a security infrastructure can be achieved without changing the JBossSX

Security on JBoss

276

http://java.sun.com/products/jaas/

security manager implementation. All that needs to change is the configuration of the authentication stack that
JAAS uses.

8.2.1.1. The JAAS Core Classes

The JAAS core classes can be broken down into three categories: common, authentication, and authorization.
The following list presents only the common and authentication classes because these are the specific classes
used to implement the functionality of JBossSX covered in this chapter.

Common classes:

• Subject (javax.security.auth.Subject)
• Principal (java.security.Principal)

Authentication classes:

• Callback (javax.security.auth.callback.Callback)
• CallbackHandler (javax.security.auth.callback.CallbackHandler)
• Configuration (javax.security.auth.login.Configuration)
• LoginContext (javax.security.auth.login.LoginContext)
• LoginModule (javax.security.auth.spi.LoginModule)

8.2.1.1.1. Subject and Principal

To authorize access to resources, applications first need to authenticate the request's source. The JAAS frame-
work defines the term subject to represent a request's source. The Subject class is the central class in JAAS. A
Subject represents information for a single entity, such as a person or service. It encompasses the entity's prin-
cipals, public credentials, and private credentials. The JAAS APIs use the existing Java 2
java.security.Principal interface to represent a principal, which is essentially just a typed name.

During the authentication process, a subject is populated with associated identities, or principals. A subject may
have many principals. For example, a person may have a name principal (John Doe), a social security number
principal (123-45-6789), and a username rincipal (johnd), all of which help distinguish the subject from other
subjects. To retrieve the principals associated with a swubject, two methods are available:

public Set getPrincipals() {...}
public Set getPrincipals(Class c) {...}

The first method returns all princiaps contained in the subject. The second method only returns those principals
that are instances of Class c or one of its subclasses. An empty set will be returned if the subject has no match-
ing principals. Note that the java.security.acl.Group interface is a subinterface of
java.security.Principal, and so an instance in the principals set may represent a logical grouping of other
principals or groups of principals.

8.2.1.1.2. Authentication of a Subject

Authentication of a subject requires a JAAS login. The login procedure consists of the following steps:

• An application instantiates a LoginContext passing in the name of the login configuration and a Callback-

Handler to populate the Callback objects as required by the configuration LoginModules.

• The LoginContext consults a Configuration to load all of the LoginModules included in the named login
configuration. If no such named configuration exists the other configuration is used as a default.

Security on JBoss

277

• The application invokes the LoginContext.login method.

• The login method invokes all the loaded LoginModules. As each LoginModule attempts to authenticate the
subject, it invokes the handle method on the associated CallbackHandler to obtain the information required
for the authentication process. The required information is passed to the handle method in the form of an ar-
ray of Callback objects. Upon success, the LoginModules associate relevant principals and credentials with
the subject.

• The LoginContext returns the authentication status to the application. Success is represented by a return
from the login method. Failure is represented through a LoginException being thrown by the login method.

• If authentication succeeds, the application retrieves the authenticated subject using the LoginCon-

text.getSubject method.

• After the scope of the subject authentication is complete, all principals and related information associated
with the subject by the login method may be removed by invoking the LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating subjects and offers a way to develop an
application independent of the underlying authentication technology. The LoginContext consults a Configura-

tion to determine the authentication services configured for a particular application. LoginModule classes rep-
resent the authentication services. Therefore, you can plug in different login modules into an application
without changing the application itself. Example 8.8 provides code fragments that illustrate the steps required
by an application to authenticate a subject.

Example 8.8. An illustration of the steps of the authentication process from the application perspective.

CallbackHandler handler = new MyHandler();
LoginContext lc = new LoginContext("some-config", handler);

try {
lc.login();
Subject subject = lc.getSubject();

} catch(LoginException e) {
System.out.println("authentication failed");
e.printStackTrace();

}

// Perform work as authenticated Subject
// ...

// Scope of work complete, logout to remove authentication info
try {

lc.logout();
} catch(LoginException e) {

System.out.println("logout failed");
e.printStackTrace();

}

// A sample MyHandler class
class MyHandler

implements CallbackHandler
{

public void handle(Callback[] callbacks) throws
IOException, UnsupportedCallbackException

{
for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {
NameCallback nc = (NameCallback)callbacks[i];
nc.setName(username);

} else if (callbacks[i] instanceof PasswordCallback) {
PasswordCallback pc = (PasswordCallback)callbacks[i];
pc.setPassword(password);

Security on JBoss

278

} else {
throw new UnsupportedCallbackException(callbacks[i],

"Unrecognized Callback");
}

}
}

}

Developers integrate with an authentication technology by creating an implementation of the LoginModule in-
terface. This allows different authentication technologies to be plugged into an application by administrator.
Multiple LoginModules can be chained together to allow for more than one authentication technology as part of
the authentication process. For example, one LoginModule may perform username/password-based authentica-
tion, while another may interface to hardware devices such as smart card readers or biometric authenticators.
The life cycle of a LoginModule is driven by the LoginContext object against which the client creates and is-
sues the login method. The process consists of a two phases. The steps of the process are as follows:

• The LoginContext creates each configured LoginModule using its public no-arg constructor.

• Each LoginModule is initialized with a call to its initialize method. The Subject argument is guaranteed to
be non-null. The signature of the initialize method is: public void initialize(Subject subject, Call-

backHandler callbackHandler, Map sharedState, Map options).

• The login method is then called to start the authentication process. An example method implementation
might prompt the user for a username and password, and then verify the information against data stored in a
naming service such as NIS or LDAP. Alternative implementations might interface to smart cards and bio-
metric devices, or simply extract user information from the underlying operating system. The validation of
user identity by each LoginModule is considered phase 1 of JAAS authentication. The signature of the login
method is: boolean login() throws LoginException. Failure is indicated by throwing a
LoginException. A return of true indicates that the method succeeded, while a return of false indicates that
the login module should be ignored.

• If the LoginContext's overall authentication succeeds, commit is invoked on each LoginModule. If phase 1
succeeded for a LoginModule, then the commit method continues with phase 2: associating relevant prin-
cipals, public credentials, and/or private credentials with the subject. If phase 1 fails for a LoginModule,
then commit removes any previously stored authentication state, such as usernames or passwords. The sig-
nature of the commit method is: boolean commit() throws LoginException. Failure to complete the
commit phase is indicated by throwing a LoginException. A return of true indicates that the method suc-
ceeded, while a return of false indicates that the login module should be ignored.

• If the LoginContext's overall authentication failed, then the abort method is invoked on each LoginModule.
The abort method removes/destroys any authentication state created by the login or initialize methods. The
signature of the abort method is: boolean abort() throws LoginException. Failure to complete the abort
phase is indicated by throwing a LoginException. A return of true indicates that the method succeeded,
while a return of false indicates that the login module should be ignored.

• Removal of the authentication state after a successful login is accomplished when the application invokes
logout on the LoginContext. This in turn results in a logout method invocation on each LoginModule. The
logout method removes the principals and credentials originally associated with the subject during the com-
mit operation. Credentials should be destroyed upon removal. The signature of the logout method is:
boolean logout() throws LoginException. Failure to complete the logout process is indicated by throw-
ing a LoginException. A return of true indicates that the method succeeded, while a return of false indic-
ates that the login module should be ignored.

Security on JBoss

279

When a LoginModule must communicate with the user to obtain authentication information, it uses a Callback-

Handler object. Applications implement the CallbackHandler interface and pass it to the LoginContext, which
forwards it directly to the underlying login modules. Login modules use the CallbackHandler both to gather
input from users, such as a password or smart-card PIN number, and to supply information to users, such as
status information. By allowing the application to specify the CallbackHandler, underlying LoginModules re-
main independent from the different ways applications interact with users. For example, a CallbackHandler's
implementation for a GUI application might display a window to solicit user input. On the other hand, a call-

backhandler's implementation for a non-GUI environment, such as an application server, might simply obtain
credential information using an application server API. The callbackhandler interface has one method to im-
plement:

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException;

The last authentication class to cover is the Callback interface. This is a tagging interface for which several de-
fault implementations are provided, including NameCallback and PasswordCallback that were used in Ex-
ample 8.8 LoginModule s use a Callback to request information required by the authentication mechanism the
LoginModule encapsulates. LoginModule s pass an array of Callback s directly to the CallbackHandler.handle

method during the authentication's login phase. If a callbackhandler does not understand how to use a Call-

back object passed into the handle method, it throws an UnsupportedCallbackException to abort the login
call.

8.3. The JBoss Security Model

Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of interfaces for
which alternate implementations may be provided. There are three basic interfaces that define the JBoss server
security layer: org.jboss.security.AuthenticationManager, org.jboss.security.RealmMapping, and
org.jboss.security.SecurityProxy. Figure 8.3 shows a class diagram of the security interfaces and their re-
lationship to the EJB container architecture.

Security on JBoss

280

Figure 8.3. The key security model interfaces and their relationship to the JBoss server EJB container
elements.

The light blue classes represent the security interfaces while the yellow classes represent the EJB container lay-
er. The two interfaces required for the implementation of the J2EE security model are the
org.jboss.security.AuthenticationManager and org.jboss.security.RealmMapping. The roles of the se-
curity interfaces presented in Figure 8.3 are summarized in the following list.

• AuthenticationManager is an interface responsible for validating credentials associated with principals.
Principals are identities and examples include usernames, employee numbers, social security numbers, and
so on. Credentials are proof of the identity and examples include passwords, session keys, digital signa-
tures, and so on. The isValid method is invoked to see if a user identity and associated credentials as
known in the operational environment are valid proof of the user identity.

• RealmMapping is an interface responsible for principal mapping and role mapping. The getPrincipal meth-
od takes a user identity as known in the operational environment and returns the application domain iden-
tity. The doesUserHaveRole method validates that the user identity in the operation environment has been
assigned the indicated role from the application domain.

• SecurityProxy is an interface describing the requirements for a custom SecurityProxyInterceptor plugin. A
SecurityProxy allows for the externalization of custom security checks on a per-method basis for both the
EJB home and remote interface methods.

• SubjectSecurityManager is a subinterface of AuthenticationManager that simply adds accessor methods
for obtaining the security domain name of the security manager and the current thread's authenticated Sub-

ject.

• SecurityDomain is an extension of the AuthenticationManager, RealmMapping, and SubjectSecurity-

Security on JBoss

281

Manager interfaces. It is a move to a comprehensive security interface based on the JAAS Subject, a
java.security.KeyStore, and the JSSE com.sun.net.ssl.KeyManagerFactory and
com.sun.net.ssl.TrustManagerFactory interfaces. This interface is still a work in progress that will be
the basis of a multi-domain security architecture that will better support ASP style deployments of applica-
tions and resources.

Note that the AuthenticationManager, RealmMapping and SecurityProxy interfaces have no association to
JAAS related classes. Although the JBossSX framework is heavily dependent on JAAS, the basic security in-
terfaces required for implementation of the J2EE security model are not. The JBossSX framework is simply an
implementation of the basic security plug-in interfaces that are based on JAAS. The component diagram
presented in Figure 8.4 illustrates this fact. The implication of this plug-in architecture is that you are free to re-
place the JAAS-based JBossSX implementation classes with your own custom security manager implementa-
tion that does not make use of JAAS, if you so desire. You'll see how to do this when you look at the JBossSX
MBeans available for the configuration of JBossSX in Figure 8.4.

Security on JBoss

282

Figure 8.4. The relationship between the JBossSX framework implementation classes and the JBoss
server EJB container layer.

8.3.1. Enabling Declarative Security in JBoss Revisited

Recall that our discussion of the J2EE standard security model ended with a requirement for the use of JBoss
server specific deployment descriptor to enable security. The details of this configuration is presented here, as
this is part of the generic JBoss security model. Figure 8.5 shows the JBoss-specific EJB and web application
deployment descriptor's security-related elements.

Figure 8.5. The security element subsets of the JBoss server jboss.xml and jboss-web.xml deployment
descriptors.

The value of a security-domain element specifies the JNDI name of the security manager interface imple-
mentation that JBoss uses for the EJB and web containers. This is an object that implements both of the Au-

thenticationManager and RealmMapping interfaces. When specified as a top-level element it defines what se-
curity domain in effect for all EJBs in the deployment unit. This is the typical usage because mixing security
managers within a deployment unit complicates inter-component operation and administration.

Security on JBoss

283

To specify the security domain for an individual EJB, you specify the security-domain at the container config-
uration level. This will override any top-level security-domain element.

The unauthenticated-principal element specifies the name to use for the Principal object returned by the
EJBContext.getUserPrincpal method when an unauthenticated user invokes an EJB. Note that this conveys
no special permissions to an unauthenticated caller. Its primary purpose is to allow unsecured servlets and JSP
pages to invoke unsecured EJBs and allow the target EJB to obtain a non-null Principal for the caller using
the getUserPrincipal method. This is a J2EE specification requirement.

The security-proxy element identifies a custom security proxy implementation that allows per-request secur-
ity checks outside the scope of the EJB declarative security model without embedding security logic into the
EJB implementation. This may be an implementation of the org.jboss.security.SecurityProxy interface, or
just an object that implements methods in the home, remote, local home or local interfaces of the EJB to secure
without implementing any common interface. If the given class does not implement the SecurityProxy inter-
face, the instance must be wrapped in a SecurityProxy implementation that delegates the method invocations
to the object. The org.jboss.security.SubjectSecurityProxy is an example SecurityProxy implementation
used by the default JBossSX installation.

Take a look at a simple example of a custom SecurityProxy in the context of a trivial stateless session bean.
The custom SecurityProxy validates that no one invokes the bean's echo method with a four-letter word as its
argument. This is a check that is not possible with role-based security; you cannot define a FourLetterEchoIn-

voker role because the security context is the method argument, not a property of the caller. The code for the
custom SecurityProxy is given in Example 8.9, and the full source code is available in the src/

main/org/jboss/chap8/ex1 directory of the book examples. The associated jboss.xml descriptor that installs
the EchoSecurityProxy as the custom proxy for the EchoBean is given in Example 8.10.

Example 8.9. The example 1 custom EchoSecurityProxy implementation that enforces the echo
argument-based security constraint.

package org.jboss.chap8.ex1;

import java.lang.reflect.Method;
import javax.ejb.EJBContext;

import org.apache.log4j.Category;

import org.jboss.security.SecurityProxy;

/** A simple example of a custom SecurityProxy implementation
* that demonstrates method argument based security checks.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.15 $
*/

public class EchoSecurityProxy implements SecurityProxy
{

Category log = Category.getInstance(EchoSecurityProxy.class);
Method echo;

public void init(Class beanHome, Class beanRemote,
Object securityMgr)

throws InstantiationException
{

log.debug("init, beanHome="+beanHome
+ ", beanRemote="+beanRemote
+ ", securityMgr="+securityMgr);

// Get the echo method for equality testing in invoke
try {

Class[] params = {String.class};
echo = beanRemote.getDeclaredMethod("echo", params);

} catch(Exception e) {

Security on JBoss

284

String msg = "Failed to finde an echo(String) method";
log.error(msg, e);
throw new InstantiationException(msg);

}
}

public void setEJBContext(EJBContext ctx)
{

log.debug("setEJBContext, ctx="+ctx);
}

public void invokeHome(Method m, Object[] args)
throws SecurityException

{
// We don't validate access to home methods

}

public void invoke(Method m, Object[] args, Object bean)
throws SecurityException

{
log.debug("invoke, m="+m);
// Check for the echo method
if (m.equals(echo)) {

// Validate that the msg arg is not 4 letter word
String arg = (String) args[0];
if (arg == null || arg.length() == 4)

throw new SecurityException("No 4 letter words");
}
// We are not responsible for doing the invoke

}
}

Example 8.10. The jboss.xml descriptor which configures the EchoSecurityProxy as the custom security
proxy for the EchoBean.

<jboss>
<security-domain>java:/jaas/other</security-domain>

<enterprise-beans>
<session>

<ejb-name>EchoBean</ejb-name>
<security-proxy>org.jboss.chap8.ex1.EchoSecurityProxy</security-proxy>

</session>
</enterprise-beans>

</jboss>

The EchoSecurityProxy checks that the method to be invoked on the bean instance corresponds to the
echo(String) method loaded the init method. If there is a match, the method argument is obtained and its
length compared against 4 or null. Either case results in a SecurityException being thrown. Certainly this is a
contrived example, but only in its application. It is a common requirement that applications must perform se-
curity checks based on the value of method arguments. The point of the example is to demonstrate how custom
security beyond the scope of the standard declarative security model can be introduced independent of the bean
implementation. This allows the specification and coding of the security requirements to be delegated to secur-
ity experts. Since the security proxy layer can be done independent of the bean implementation, security can be
changed to match the deployment environment requirements.

Now test the custom proxy by running a client that attempts to invoke the EchoBean.echo method with the ar-
guments Hello and Four as illustrated in this fragment:

public class ExClient

Security on JBoss

285

{
public static void main(String args[])

throws Exception
{

Logger log = Logger.getLogger("ExClient");
log.info("Looking up EchoBean");

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

log.info("Created Echo");
log.info("Echo.echo('Hello') = "+echo.echo("Hello"));
log.info("Echo.echo('Four') = "+echo.echo("Four"));

}
}

The first call should succeed, while the second should fail due to the fact that Four is a four-letter word. Run
the client as follows using Ant from the examples directory:

[nr@toki examples]$ ant -Dchap=chap8 -Dex=1 run-example
run-example1:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Looking up EchoBean
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello
[java] Exception in thread "main" java.rmi.ServerException: RemoteException occurred

in server thread; nested exception is:
[java] java.rmi.AccessException: SecurityException; nested exception is:
[java] java.lang.SecurityException: No 4 letter words

...
[java] at org.jboss.chap8.ex1.ExClient.main(ExClient.java:28)
[java] Caused by: java.rmi.AccessException: SecurityException; nested exception is:
[java] java.lang.SecurityException: No 4 letter words

...

The result is that the echo('Hello') method call succeeds as expected and the echo('Four') method call res-
ults in a rather messy looking exception, which is also expected. The above output has been truncated to fit in
the book. The key part to the exception is that the SecurityException("No 4 letter words") generated by
the EchoSecurityProxy was thrown to abort the attempted method invocation as desired.

8.4. The JBoss Security Extension Architecture

The preceding discussion of the general JBoss security layer has stated that the JBossSX security extension
framework is an implementation of the security layer interfaces. This is the primary purpose of the JBossSX
framework. The details of the implementation are interesting in that it offers a great deal of customization for
integration into existing security infrastructures. A security infrastructure can be anything from a database or
LDAP server to a sophisticated security software suite. The integration flexibility is achieved using the plug-
gable authentication model available in the JAAS framework.

The heart of the JBossSX framework is org.jboss.security.plugins.JaasSecurityManager. This is the de-
fault implementation of the AuthenticationManager and RealmMapping interfaces. Figure 8.6 shows how the
JaasSecurityManager integrates into the EJB and web container layers based on the security-domain element
of the corresponding component deployment descriptor.

Security on JBoss

286

Figure 8.6. The relationship between the security-domain component deployment descriptor value, the
component container and the JaasSecurityManager.

Figure 8.6 depicts an enterprise application that contains both EJBs and web content secured under the security
domain jwdomain. The EJB and web containers have a request interceptor architecture that includes a security
interceptor, which enforces the container security model. At deployment time, the security-domain element
value in the jboss.xml and jboss-web.xml descriptors is used to obtain the security manager instance associ-
ated with the container. The security interceptor then uses the security manager to perform its role. When a se-
cured component is requested, the security interceptor delegates security checks to the security manager in-
stance associated with the container.

Security on JBoss

287

The JBossSX JaasSecurityManager implementation, shown in Figure 8.6 as the JaasSecurityMgr component,
performs security checks based on the information associated with the Subject instance that results from ex-
ecuting the JAAS login modules configured under the name matching the security-domain element value. We
will drill into the JaasSecurityManager implementation and its use of JAAS in the following section.

8.4.1. How the JaasSecurityManager Uses JAAS

The JaasSecurityManager uses the JAAS packages to implement the AuthenticationManager and RealmMap-

ping interface behavior. In particular, its behavior derives from the execution of the login module instances that
are configured under the name that matches the security domain to which the JaasSecurityManager has been
assigned. The login modules implement the security domain's principal authentication and role-mapping beha-
vior. Thus, you can use the JaasSecurityManager across different security domains simply by plugging in dif-
ferent login module configurations for the domains.

To illustrate the details of the JaasSecurityManager's usage of the JAAS authentication process, you will walk
through a client invocation of an EJB home method invocation. The prerequisite setting is that the EJB has
been deployed in the JBoss server and its home interface methods have been secured using method-permission

elements in the ejb-jar.xml descriptor, and it has been assigned a security domain named jwdomain using the
jboss.xml descriptor security-domain element.

Security on JBoss

288

Figure 8.7. An illustration of the steps involved in the authentication and authorization of a secured EJB
home method invocation.

Security on JBoss

289

Figure 8.7 provides a view of the client to server communication we will discuss. The numbered steps shown
are:

1. The client first has to perform a JAAS login to establish the principal and credentials for authentication,
and this is labeled Client Side Login in the figure. This is how clients establish their login identities in
JBoss. Support for presenting the login information via JNDI InitialContext properties is provided via
an alternate configuration. A JAAS login entails creating a LoginContext instance and passing the name
of the configuration to use. The configuration name is other. This one-time login associates the login
principal and credentials with all subsequent EJB method invocations. Note that the process might not au-
thenticate the user. The nature of the client-side login depends on the login module configuration that the
client uses. In this example, the other client-side login configuration entry is set up to use the ClientLo-

ginModule module (an org.jboss.security.ClientLoginModule). This is the default client side module
that simply binds the username and password to the JBoss EJB invocation layer for later authentication on
the server. The identity of the client is not authenticated on the client.

2. Later, the client obtains the EJB home interface and attempts to create a bean. This event is labeled as
Home Method Invocation. This results in a home interface method invocation being sent to the JBoss serv-
er. The invocation includes the method arguments passed by the client along with the user identity and cre-
dentials from the client-side JAAS login performed in step 1.

3. On the server side, the security interceptor first requires authentication of the user invoking the call,
which, as on the client side, involves a JAAS login.

4. The security domain under which the EJB is secured determines the choice of login modules. The security
domain name is used as the login configuration entry name passed to the LoginContext constructor. The
EJB security domain is jwdomain. If the JAAS login authenticates the user, a JAAS Subject is created that
contains the following in its PrincipalsSet:

• A java.security.Principal that corresponds to the client identity as known in the deployment se-
curity environment.

• A java.security.acl.Group named Roles that contains the role names from the application domain
to which the user has been assigned. org.jboss.security.SimplePrincipal objects are used to rep-
resent the role names; SimplePrincipal is a simple string-based implementation of Principal. These
roles are used to validate the roles assigned to methods in ejb-jar.xml and the EJBCon-

text.isCallerInRole(String) method implementation.

• An optional java.security.acl.Group named CallerPrincipal, which contains a single
org.jboss.security.SimplePrincipal that corresponds to the identity of the application domain's
caller. The CallerPrincipal sole group member will be the value returned by the EJBCon-

text.getCallerPrincipal() method. The purpose of this mapping is to allow a Principal as known
in the operational security environment to map to a Principal with a name known to the application.
In the absence of a CallerPrincipal mapping the deployment security environment principal is used
as the getCallerPrincipal method value. That is, the operational principal is the same as the applica-
tion domain principal.

5. The final step of the security interceptor check is to verify that the authenticated user has permission to in-
voke the requested method This is labeled as Server Side Authorization in Figure 8.7. Performing the au-
thorization this entails the following steps:

• Obtain the names of the roles allowed to access the EJB method from the EJB container. The role
names are determined by ejb-jar.xml descriptor role-name elements of all method-permission ele-

Security on JBoss

290

ments containing the invoked method.

• If no roles have been assigned, or the method is specified in an exclude-list element, then access to
the method is denied. Otherwise, the doesUserHaveRole method is invoked on the security manager by
the security interceptor to see if the caller has one of the assigned role names. This method iterates
through the role names and checks if the authenticated user's Subject Roles group contains a Simple-

Principal with the assigned role name. Access is allowed if any role name is a member of the Roles

group. Access is denied if none of the role names are members.

• If the EJB was configured with a custom security proxy, the method invocation is delegated to it. If the
security proxy wants to deny access to the caller, it will throw a java.lang.SecurityException. If no
SecurityException is thrown, access to the EJB method is allowed and the method invocation passes
to the next container interceptor. Note that the SecurityProxyInterceptor handles this check and this
interceptor is not shown.

Every secured EJB method invocation, or secured web content access, requires the authentication and authoriz-
ation of the caller because security information is handled as a stateless attribute of the request that must be
presented and validated on each request. This can be an expensive operation if the JAAS login involves client-
to-server communication. Because of this, the JaasSecurityManager supports the notion of an authentication
cache that is used to store principal and credential information from previous successful logins. You can spe-
cify the authentication cache instance to use as part of the JaasSecurityManager configuration as you will see
when the associated MBean service is discussed in following section. In the absence of any user-defined cache,
a default cache that maintains credential information for a configurable period of time is used.

8.4.2. The JaasSecurityManagerService MBean

The JaasSecurityManagerService MBean service manages security managers. Although its name begins with
Jaas, the security managers it handles need not use JAAS in their implementation. The name arose from the
fact that the default security manager implementation is the JaasSecurityManager. The primary role of the
JaasSecurityManagerService is to externalize the security manager implementation. You can change the se-
curity manager implementation by providing an alternate implementation of the AuthenticationManager and
RealmMapping interfaces. Of course this is optional because, by default, the JaasSecurityManager implementa-
tion is used.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
javax.naming.spi.ObjectFactory implementation to allow for simple code-free management of the JNDI
name to security manager implementation mapping. It has been mentioned that security is enabled by specify-
ing the JNDI name of the security manager implementation via the security-domain deployment descriptor
element. When you specify a JNDI name, there has to be an object-binding there to use. To simplify the setup
of the JNDI name to security manager bindings, the JaasSecurityManagerService manages the association of
security manager instances to names by binding a next naming system reference with itself as the JNDI Object-
Factory under the name java:/jaas. This allows one to use a naming convention of the form java:/jaas/XYZ

as the value for the security-domain element, and the security manager instance for the XYZ security domain
will be created as needed for you. The security manager for the domain XYZ is created on the first lookup
against the java:/jaas/XYZ binding by creating an instance of the class specified by the SecurityManager-

ClassName attribute using a constructor that takes the name of the security domain. For example, consider the
following container security configuration snippet:

<jboss>
<!-- Configure all containers to be secured under the "hades" security domain -->
<security-domain>java:/jaas/hades</security-domain>
<!-- ... -->

</jboss>

Security on JBoss

291

Any lookup of the name java:/jaas/hades will return a security manager instance that has been associated
with the security domain named hades. This security manager will implement the AuthenticationManager and
RealmMapping security interfaces and will be of the type specified by the JaasSecurityManagerService Se-

curityManagerClassName attribute.

The JaasSecurityManagerService MBean is configured by default for use in the standard JBoss distribution,
and you can often use the default configuration as is. The configurable attributes of the JaasSecurityMan-

agerService include:

• SecurityManagerClassName: The name of the class that provides the security manager implementation.
The implementation must support both the org.jboss.security.AuthenticationManager and
org.jboss.security.RealmMapping interfaces. If not specified this defaults to the JAAS-based
org.jboss.security.plugins.JaasSecurityManager.

• CallbackHandlerClassName: The name of the class that provides the
javax.security.auth.callback.CallbackHandler implementation used by the JaasSecurityManager.
You can override the handler used by the JaasSecurityManager if the default implementation
(org.jboss.security.auth.callback.SecurityAssociationHandler) does not meet your needs. This is a
rather deep configuration that generally should not be set unless you know what you are doing.

• SecurityProxyFactoryClassName: The name of the class that provides the
org.jboss.security.SecurityProxyFactory implementation. If not specified this defaults to
org.jboss.security.SubjectSecurityProxyFactory.

• AuthenticationCacheJndiName: Specifies the location of the security credential cache policy. This is first
treated as an ObjectFactory location capable of returning CachePolicy instances on a per-security-domain
basis. This is done by appending the name of the security domain to this name when looking up the
CachePolicy for a domain. If this fails, the location is treated as a single CachePolicy for all security do-
mains. As a default, a timed cache policy is used.

• DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The default value is
1800 seconds (30 minutes). The value you use for the timeout is a tradeoff between frequent authentication
operations and how long credential information may be out of synch with respect to the security informa-
tion store. If you want to disable caching of security credentials, set this to 0 to force authentication to occur
every time. This has no affect if the AuthenticationCacheJndiName has been changed from the default
value.

• DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds. This controls the
interval at which the cache current timestamp is updated and should be less than the DefaultCacheTimeout

in order for the timeout to be meaningful. The default resolution is 60 seconds(1 minute). This has no affect
if the AuthenticationCacheJndiName has been changed from the default value.

The JaasSecurityManagerService also supports a number of useful operations. These include flushing any se-
curity domain authentication cache at runtime, getting the list of active users in a security domain authentica-
tion cache, and any of the security manager interface methods.

Flushing a security domain authentication cache can be used to drop all cached credentials when the underlying
store has been updated and you want the store state to be used immediately. The MBean operation signature is:
public void flushAuthenticationCache(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";

Security on JBoss

292

ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
server.invoke(jaasMgr, "flushAuthenticationCache", params, signature);

Getting the list of active users provides a snapshot of the Principals keys in a security domain authentication
cache that are not expired. The MBean operation signature is: public List getAuthenticationCachePrin-

cipals(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
List users = (List) server.invoke(jaasMgr, "getAuthenticationCachePrincipals",

params, signature);

The security manager has a few additional access methods.

public boolean isValid(String securityDomain, Principal principal, Object credential);
public Principal getPrincipal(String securityDomain, Principal principal);
public boolean doesUserHaveRole(String securityDomain, Principal principal,

Object credential, Set roles);
public Set getUserRoles(String securityDomain, Principal principal, Object credential);

They provide access to the corresponding AuthenticationManager and RealmMapping interface method of the
associated security domain named by the securityDomain argument.

8.4.3. The JaasSecurityDomain MBean

The org.jboss.security.plugins.JaasSecurityDomain is an extension of JaasSecurityManager that adds
the notion of a KeyStore, aJSSE KeyManagerFactory and a TrustManagerFactory for supporting SSL and oth-
er cryptographic use cases. The additional configurable attributes of the JaasSecurityDomain include:
JKS

• KeyStoreType: The type of the KeyStore implementation. This is the type argument passed to the
java.security.KeyStore.getInstance(String type) factory method.

• KeyStoreURL: A URL to the location of the KeyStore database. This is used to obtain an InputStream to
initialize the KeyStore. If the string is not a value URL, it iss treated as a file.

• KeyStorePass: The password associated with the KeyStore database contents. The KeyStorePass is also
used in combination with the Salt and IterationCount attributes to create a PBE secret key used with the
encode/decode operations. The KeyStorePass attribute value format is one of the following:

• The plaintext password for the KeyStore The toCharArray() value of the string is used without any
manipulation.

• A command to execute to obtain the plaintext password. The format is {EXT}... where the ... is the
exact command line that will be passed to the Runtime.exec(String) method to execute a platform-spe-
cific command. The first line of the command output is used as the password.

• A class to create to obtain the plaintext password. The format is {CLASS}classname[:ctorarg] where

Security on JBoss

293

the [:ctorarg] is an optional string that will be passed to the constructor when instantiating the the
classname. The password is obtained from classname by invoking a toCharArray() method if found,
otherwise, the toString() method is used.

• Salt: The PBEParameterSpec salt value.

• IterationCount: The PBEParameterSpec iteration count value.

• ManagerServiceName: Sets the JMX object name string of the security manager service MBean. This is
used to register the defaults to register the JaasSecurityDomain as a the security manager under
java:/jaas/<domain> where <domain> is the name passed to the MBean constructor. The name defaults to
jboss.security:service=JaasSecurityManager.

• LoadSunJSSEProvider: A flag indicating if the Sun com.sun.net.ssl.internal.ssl.Provider security
provider should be loaded on startup. This is needed when using the Sun JSSE jars without them installed
as an extension with JDK 1.3. This should be set to false with JDK 1.4 or when using an alternate JSSE pro-
vider. This flag currently defaults to true.

8.4.4. An XML JAAS Login Configuration MBean

JBoss uses a custom implementation of the javax.security.auth.login.Configuration class that is
provided by the org.jboss.security.auth.login.XMLLoginConfig MBean. This configuration implementa-
tion uses an XML format that conforms to the DTD given by Figure 8.8.

Figure 8.8. The XMLLoginConfig DTD

The name attribute of the application-policy is the login configuration name. This corresponds to the portion of
the jboss.xml and jboss-web.xml security-domain element value after the java:/jaas/ prefix. The code at-
tribute of the login-module element specifies the class name of the login module implementation. The flag at-
tribute controls the overall behavior of the authentication stack. The allowed values and measnings are:

• required: the LoginModule is required to succeed. If it succeeds or fails, authentication still continues to
proceed down the LoginModule list.

• requisite: the LoginModule is required to succeed. If it succeeds, authentication continues down the Login-

Module list. If it fails, control immediately returns to the application (authentication does not proceed down
the LoginModule list).

Security on JBoss

294

• sufficient: the LoginModule is not required to succeed. If it does succeed, control immediately returns to the
application (authentication does not proceed down the LoginModule list). If it fails, authentication continues
down the LoginModule list.

• optional: the LoginModule is not required to succeed. If it succeeds or fails, authentication still continues to
proceed down the LoginModule list.

Zero or more module-option elements may be specified as child elements of a login-module. These define
name/value string pairs that are made available to the login module during initialization. The name attribute
specifies the option name while the module-option body provides the value. An example login configuration is
given in Example 8.11.

Example 8.11. A sample login module configuration suitable for use with XMLLoginConfig

<policy>
<application-policy name="srp-test">

<authentication>
<login-module code="org.jboss.security.srp.jaas.SRPCacheLoginModule"

flag="required">
<module-option name="cacheJndiName">srp-test/AuthenticationCache</module-option>

</login-module>

<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">

<module-option name="password-stacking">useFirstPass</module-option>
</login-module>

</authentication>
</application-policy>

</policy>

The XMLLoginConfig MBean supports the following attributes:

• ConfigURL: specifies the URL of the XML login configuration file that should be loaded by this MBean
on startup. This must be a valid URL string representation.

• ConfigResource: specifies the resource name of the XML login configuration file that should be loaded by
this MBean on startup. The name is treated as a classpath resource for which a URL is located using the
thread context class loader.

• ValidateDTD: a flag indicating if the XML configuration should be validated against its DTD. This de-
faults to true.

The MBean also supports the following operations that allow one to dynamically extend the login configura-
tions at runtime. Note that any operation that attempts to alter login configuration requires a
javax.security.auth.AuthPermission("refreshLoginConfiguration") when running with a security man-
ager. The org.jboss.chap8.service.SecurityConfig service demonstrates how this can be used to add/
remove a deployment specific scurity configuration dynamically.

• void addAppConfig(String appName, AppConfigurationEntry[] entries): this adds the given login
module configuration stack to the current configuration under the given appName. This replaces any existing
entry under that name.

• void removeAppConfig(String appName): this removes the login module configuration registered under
the given appName.

Security on JBoss

295

• String[] loadConfig(URL configURL) throws Exception: this loads one or more login configurations
from a URL representing either an XML or legacy Sun login configuration file. Note that all login configur-
ations must be added or none will be added. It returns the names of the login configurations that were ad-
ded.

• void removeConfigs(String[] appNames): this removes the login configurations specified appNames ar-
ray.

• String displayAppConfig(String appName): this operation displays a simple string format of the named
configuration if it exists.

8.4.5. The JAAS Login Configuration Management MBean

The installation of the custom javax.security.auth.login.Configuration is managed by the
org.jboss.security.plugins.SecurityConfig MBean. There is one configurable attribute:

• LoginConfig: Specifies the JMX ObjectName string of the that provides the default JAAS login configura-
tion. When the SecurityConfig is started, this mean is queried for its
javax.security.auth.login.Configuration by calling its getConfiguration(Configuration current-

Config) operation. If the LoginConfig attribute is not specified then the default Sun Configuration imple-
mentation described in the Configuration class JavaDocs is used.

In addition to allowing for a custom JAAS login configuration implementation, this service allows configura-
tions to be chained together in a stack at runtime. This allows one to push a login configuration onto the stack
and latter pop it. This is a feature used by the security unit tests to install custom login configurations into a de-
fault JBoss installation. Pusing a new configuration is done using:

public void pushLoginConfig(String objectName) throws
JMException, MalformedObjectNameException;

The objectName parameters specifies an MBean similar to the LoginConfig attribute. The current login config-
uration may be removed using:

public void popLoginConfig() throws JMException;

8.4.6. Using and Writing JBossSX Login Modules

The JaasSecurityManager implementation allows complete customization of the authentication mechanism us-
ing JAAS login module configurations. By defining the login module configuration entry that corresponds to
the security domain name you have used to secure access to your J2EE components, you define the authentica-
tion mechanism and integration implementation.

The JBossSX framework includes a number of bundled login modules suitable for integration with standard se-
curity infrastructure store protocols such as LDAP and JDBC. It also includes standard base class implementa-
tions that help enforce the expected LoginModule to Subject usage pattern that was described in theSec-
tion 8.4.7. These implementations allow for easy integration of your own authentication protocol, if none of the
bundled login modules prove suitable. In this section we will first describe the useful bundled login modules
and their configuration, and then end with a discussion of how to create your own custom LoginModule imple-
mentations for use with JBoss.

8.4.6.1. org.jboss.security.auth.spi.IdentityLoginModule

Security on JBoss

296

The IdentityLoginModule is a simple login module that associates the principal specified in the module op-
tions with any subject authenticated against the module. It creates a SimplePrincipal instance using the name
specified by the principal option. Although this is certainly not an appropriate login module for production
strength authentication, it can be of use in development environments when you want to test the security associ-
ated with a given principal and associated roles.

The supported login module configuration options include:

• principal=string: The name to use for the SimplePrincipal all users are authenticated as. The principal
name defaults to guest if no principal option is specified.

• roles=string-list: The names of the roles that will be assigned to the user principal. The value is a comma-
delimited list of role names.

• password-stacking=useFirstPass: When password-stacking option is set, this module first looks for a
shared username under the property name javax.security.auth.login.name in the login module shared
state map. If found this is used as the principal name. If not found the principal name set by this login mod-
ule is stored under the property name javax.security.auth.login.name.

A sample legacy Sun format login configuration entry that would authenticate all users as the principal named
jduke and assign role names of TheDuke, and AnimatedCharacter is:

testIdentity {
org.jboss.security.auth.spi.IdentityLoginModule required
principal=jduke
roles=TheDuke,AnimatedCharater;

};

The corresponding XMLLoginConfig format is:

<policy>
<application-policy name="testIdentity">

<authentication>
<login-module code="org.jboss.security.auth.spi.IdentityLoginModule"

flag="required">
<module-option name="principal">jduke</module-option>
<module-option name="roles">TheDuke,AnimatedCharater</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

To add this entry to a JBoss server login cofiguration found in the default configuration file set you would
modify the conf/default/auth.conf file of the JBoss distribution.

8.4.6.2. org.jboss.security.auth.spi.UsersRolesLoginModule

The UsersRolesLoginModule is another simple login module that supports multiple users and user roles, and is
based on two Java Properties formatted text files. The username-to-password mapping file is called
users.properties and the username-to-roles mapping file is called roles.properties. The properties files
are loaded during initialization using the initialize method thread context class loader. This means that these
files can be placed into the J2EE deployment JAR, the JBoss configuration directory, or any directory on the
JBoss server or system classpath. The primary purpose of this login module is to easily test the security settings
of multiple users and roles using properties files deployed with the application.

The users.properties file uses a username=password format with each user entry on a separate line as show
here:

Security on JBoss

297

username1=password1
username2=password2
...

The roles.properties file uses as username=role1,role2,... format with an optional group name value. For
example:

username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

The username.XXX form of property name is used to assign the username roles to a particular named group of
roles where the XXX portion of the property name is the group name. The username=... form is an abbreviation
for username.Roles=..., where the Roles group name is the standard name the JaasSecurityManager expects
to contain the roles which define the users permissions.

The following would be equivalent definitions for the jduke username:

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

The supported login module configuration options include the following:

• unauthenticatedIdentity=name: Defines the principal name that should be assigned to requests that con-
tain no authentication information. This can be used to allow unprotected servlets to invoke methods on
EJBs that do not require a specific role. Such a principal has no associated roles and so can only access
either unsecured EJBs or EJB methods that are associated with the unchecked permission constraint.

• password-stacking=useFirstPass: When password-stacking option is set, this module first looks for a
shared username and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map. If found these
are used as the principal name and password. If not found the principal name and password are set by this
login module and stored under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively.

• hashAlgorithm=string: The name of the java.security.MessageDigest algorithm to use to hash the
password. There is no default so this option must be specified to enable hashing. When hashAlgorithm is
specified, the clear text password obtained from the callbackhandler is hashed before it is passed to User-

namePasswordLoginModule.validatePassword as the inputPassword argument. The expectedPassword as
stored in the users.properties file must be comparably hashed.

• hashEncoding=base64|hex: The string format for the hashed pass and must be either base64 or hex. Base64
is the default.

• hashCharset=string: The encoding used to convert the clear text password to a byte array. The platform
default encoding is the default.

• usersProperties=string: The name of the properties resource containing the username to password map-
pings. This defaults to users.properties.

• rolesProperties=string: The name of the properties resource containing the username to roles mappings.
This defaults to roles.properties.

A sample legacy Sun format login configuration entry that assigned unauthenticated users the principal name
nobody and contains based64 encoded, MD5 hashes of the passwords in a usersb64.properties file is:

Security on JBoss

298

testUsersRoles {
org.jboss.security.auth.spi.UsersRolesLoginModule required
usersProperties=usersb64.properties
hashAlgorithm=MD5
hashEncoding=base64
unauthenticatedIdentity=nobody
;

};

The corresponding XMLLoginConfig format is:

<policy>
<application-policy name="testUsersRoles">

<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag="required">
<module-option name="usersProperties">usersb64.properties</module-option>
<module-option name="hashAlgorithm">MD5</module-option>
<module-option name="hashEncoding">base64</module-option>
<module-option name="unauthenticatedIdentity">nobody</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

8.4.6.3. org.jboss.security.auth.spi.LdapLoginModule

The LdapLoginModule is a LoginModule implementation that authenticates against an LDAP server using JNDI
login using the login module configuration options. You would use the LdapLoginModule if your username and
credential information are store in an LDAP server that is accessible using a JNDI LDAP provider.

The LDAP connectivity information is provided as configuration options that are passed through to the envir-
onment object used to create JNDI initial context. The standard LDAP JNDI properties used include the follow-
ing:

• java.naming.factory.initial: The classname of the InitialContextFactory implementation. This defaults
to the Sun LDAP provider implementation com.sun.jndi.ldap.LdapCtxFactory.

• java.naming.provider.url: The LDAP URL for the LDAP server

• java.naming.security.authentication: The security level to use. This defaults to simple.

• java.naming.security.protocol: The transport protocol to use for secure access, such as, ssl.

• java.naming.security.principal: The principal for authenticating the caller to the service. This is built from
other properties as described below.

• java.naming.security.credentials: The value of the property depends on the authentication scheme. For
example, it could be a hashed password, clear-text password, key, certificate, and so on.

The supported login module configuration options include the following:

• principalDNPrefix=string: A prefix to add to the username to form the user distinguished name. See
principalDNSuffix for more info.

• principalDNSuffix=string: A suffix to add to the username when forming the user distiguished name. This
is useful if you prompt a user for a username and you don't want the user to have to enter the fully distin-
guished name. Using this property and principalDNSuffix the userDN will be formed as:

Security on JBoss

299

String userDN = principalDNPrefix + username + principalDNSuffix;

• useObjectCredential=true|false: Indicates that the credential should be obtained as an opaque Object us-
ing the org.jboss.security.auth.callback.ObjectCallback type of Callback rather than as a char[]

password using a JAAS PasswordCallback. This allows for passing non-char[] credential information to
the LDAP server.

• rolesCtxDN=string: The fixed distinguished name to the context to search for user roles.

• userRolesCtxDNAttributeName=string: The name of an attribute in the user object that contains the dis-
tinguished name to the context to search for user roles. This differs from rolesCtxDN in that the context to
search for a user's roles can be unique for each user.

• roleAttributeID=string: The name of the attribute that contains the user roles. If not specified this defaults
to roles.

• roleAttributeIsDN=string: A flag indicating whether the roleAttributeID contains the fully distin-
guished name of a role object, or the role name. If false, the role name is taken from the value of roleAt-
tributeID. If true, the role attribute represents the distinguished name of a role object. The role name is
taken from the value of the roleNameAttributeId attribute of the context name by the distinguished name.
In certain directory schemas (e.g., MS ActiveDirectory), role attributes in the user object are stored as DNs
to role objects instead of as simple names, in which case, this property should be set to true. The default is
false.

• roleNameAttributeID=string: The name of the attribute of the in the context pointed to by the roleCtxDN

distiguished name value which contains the role name. If the roleAttributeIsDN property is set to true,
this property is used to find the role object's name attribute. The default is group.

• uidAttributeID=string: The name of the attribute in the object containing the user roles that corresponds to
the userid. This is used to locate the user roles. If not specified this defaults to uid.

• matchOnUserDN=true|false: A flag indicating if the search for user roles should match on the user's fully
distinguished name. If false, just the username is used as the match value against the uidAttributeName at-
tribute. If true, the full userDN is used as the match value.

• unauthenticatedIdentity=string: The principal name that should be assigned to requests that contain no
authentication information. This behavior is inherited from the UsernamePasswordLoginModule superclass.

• password-stacking=useFirstPass: When the password-stacking option is set, this module first looks for a
shared username and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map. If found these
are used as the principal name and password. If not found the principal name and password are set by this
login module and stored under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively.

• hashAlgorithm=string: The name of the java.security.MessageDigest algorithm to use to hash the
password. There is no default so this option must be specified to enable hashing. When hashAlgorithm is
specified, the clear text password obtained from the callbackhandler is hashed before it is passed to User-

namePasswordLoginModule.validatePassword as the inputPassword argument. The expectedPassword

as stored in the LDAP server must be comparably hashed.

• hashEncoding=base64|hex: The string format for the hashed pass and must be either base64 or hex.
Base64 is the default.

Security on JBoss

300

• hashCharset=string: The encoding used to convert the clear text password to a byte array. The platform
default encoding is the default.

• allowEmptyPasswords: A flag indicating if empty (length 0) passwords should be passed to the LDAP
server. An empty password is treated as an anonymous login by some LDAP servers and this may not be a
desirable feature. Set this to false to reject empty passwords, true to have the LDAP server validate the
empty password. The default is true.

The authentication of a user is performed by connecting to the LDAP server based on the login module config-
uration options. Connecting to the LDAP server is done by creating an InitialLdapContext with an environ-
ment composed of the LDAP JNDI properties described previously in this section. The Con-

text.SECURITY_PRINCIPAL is set to the distinguished name of the user as obtained by the callback handler in
combination with the principalDNPrefix and principalDNSuffix option values, and the Con-

text.SECURITY_CREDENTIALS property is either set to the String password or the Object credential depending
on the useObjectCredential option.

Once authentication has succeeded by virtue of being able to create an InitialLdapContext instance, the user's
roles are queried by performing a search on the rolesCtxDN location with search attributes set to the roleAt-

tributeName and uidAttributeName option values. The roles names are obtaining by invoking the toString

method on the role attributes in the search result set.

A sample Sun legacy format login configuration entry is:

testLdap {
org.jboss.security.auth.spi.LdapLoginModule required
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url="ldap://ldaphost.jboss.org:1389/"
java.naming.security.authentication=simple
principalDNPrefix=uid=
uidAttributeID=userid
roleAttributeID=roleName
principalDNSuffix=,ou=People,o=jboss.org
rolesCtxDN=cn=JBossSX Tests,ou=Roles,o=jboss.org

};

The corresponding XMLLoginConfig format is:

<policy>
<application-policy name="testLdap">

<authentication>
<login-module code="org.jboss.security.auth.spi.LdapLoginModule"

flag="required">
<module-option name="java.naming.factory.initial">

com.sun.jndi.ldap.LdapCtxFactory
</module-option>
<module-option name="java.naming.provider.url">

ldap://ldaphost.jboss.org:1389/
</module-option>
<module-option name="java.naming.security.authentication">

simple
</module-option>
<module-option name="principalDNPrefix">uid=</module-option>
<module-option name="uidAttributeID">userid</module-option>
<module-option name="roleAttributeID">roleName</module-option>
<module-option name="principalDNSuffix">,ou=People,o=jboss.org
</module-option>
<module-option name="rolesCtxDN">cn=JBossSX Tests,ou=Roles,o=jboss.org
</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

Security on JBoss

301

To help you understand all of the options of the LdapLoginModule, consider the sample LDAP server data
shown in Figure 8.9. This figure corresponds to the testLdap login configuration just shown.

Figure 8.9. An LDAP server configuration compatible with the testLdap sample configuration.

Take a look at the testLdap login module configuration in comparision to the Figure 8.9 schema. The
java.naming.factory.initial, java.naming.factory.url and java.naming.security options indicate the
Sun LDAP JNDI provider implementation will be used, the LDAP server is located on host lda-

phost.jboss.org on port 1389, and that simple username and password will be used to authenticate clients
connecting to the LDAP server.

When the LdapLoginModule performs authentication of a user, it does so by connecting to the LDAP server
specified by the java.naming.factory.url. The java.naming.security.principal property is built from the
principalDNPrefix, passed in username and principalDNSuffix as described above. For the testLdap con-
figuration example and a username of jduke, the java.naming.security.principal string would be
uid=jduke,ou=People,o=jboss.org. This corresponds to the LDAP context on the lower right of Figure 8.9
labeled as Principal Context. The java.naming.security.credentials property would be set to the passed in
password and it would have to match the userPassword attribute of the principal context. How a secured LDAP
context stores the authentication credential information depends on the LDAP server, so your LDAP server
may handle the validation of the java.naming.security.credentials property differently.

Once authentication succeeds, the roles on which authorization will be based are retrieved by performing a
JNDI search of the LDAP context whose distinguished name is given by the rolesCtxDN option value. For the
testLdap configuration this is cn=JBossSX Tests,ou=Roles,o=jboss.org and corresponds to the LDAP con-
text on the lower left of Figure 8.9 labeled Roles Context. The search attempts to locate any subcontexts that
contain an attribute whose name is given by the uidAttributeID option, and whose value matches the user-
name passed to the login module. For any matching context, all values of the attribute whose name is given by
the roleAttributeID option are obtained. For the testLdap configuration the attribute name that contains the
roles is called roleName. The resulting roleName values are stored in the JAAS Subject associated with the Ld-

apLoginModule as the Roles group principals that will be used for role-based authorization. For the LDAP
schema shown in Figure 8.9, the roles that will be assigned to the user jduke are TheDuke and AnimatedChar-

acter.

8.4.6.4. org.jboss.security.auth.spi.DatabaseServerLoginModule

Security on JBoss

302

The DatabaseServerLoginModule is a JDBC based login module that supports authentication and role map-
ping. You would use this login module if you have your username, password and role information in a JDBC
accessible database. The DatabaseServerLoginModule is based on two logical tables:

Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

The Principals table associates the user PrincipalID with the valid password and the Roles table associates
the user PrincipalID with its role sets. The roles used for user permissions must be contained in rows with a
RoleGroup column value of Roles. The tables are logical in that you can specify the SQL query that the login
module uses. All that is required is that the java.sql.ResultSet has the same logical structure as the Prin-

cipals and Roles tables described previously. The actual names of the tables and columns are not relevant as
the results are accessed based on the column index. To clarify this notion, consider a database with two tables,
Principals and Roles, as already declared. The following statements build the tables to contain a PrincipalID

java with a Password of echoman in the Principals table, a PrincipalID java with a role named Echo in the
Roles RoleGroup in the Roles table, and a PrincipalID java with a role named caller_java in the Caller-

Principal RoleGroup in the Roles table:

INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')

The supported login module configuration options include the following:

• dsJndiName: The JNDI name for the DataSource of the database containing the logical Principals and
Roles tables. If not specified this defaults to java:/DefaultDS.

• principalsQuery: The prepared statement query equivalent to: select Password from Principals where

PrincipalID=?. If not specified this is the exact prepared statement that will be used.

• rolesQuery: The prepared statement query equivalent to: select Role, RoleGroup from Roles where

PrincipalID=?. If not specified this is the exact prepared statement that will be used.

• unauthenticatedIdentity=string: The principal name that should be assigned to requests that contain no
authentication information.

• password-stacking=useFirstPass: When password-stacking option is set, this module first looks for a
shared username and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map. If found these
are used as the principal name and password. If not found the principal name and password are set by this
login module and stored under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively.

• hashAlgorithm=string: The name of the java.security.MessageDigest algorithm to use to hash the
password. There is no default so this option must be specified to enable hashing. When hashAlgorithm is
specified, the clear text password obtained from the callbackhandler is hashed before it is passed to User-

namePasswordLoginModule.validatePassword as the inputPassword argument. The expectedPassword as
obtained from the database must be comparably hashed.

• hashEncoding=base64|hex: The string format for the hashed pass and must be either base64 or hex.
Base64 is the default.

• hashCharset=string: The encoding used to convert the clear text password to a byte array. The platform
default encoding is the default

Security on JBoss

303

• ignorePasswordCase=true|false: A boolean flag indicating if the password comparison should ignore case.
This can be useful for hashed password encoding where the case of the hashed password is not significant.

• principalClass: An option that specifies a Principal implementation class. This must support a constructor
taking a string argument for the princpal name.

As an example DatabaseServerLoginModule configuration, consider a custom table schema like the following:

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

A sample Sun legacy format corresponding DatabaseServerLoginModule configuration would be:

testDB {
org.jboss.security.auth.spi.DatabaseServerLoginModule required
dsJndiName="java:/MyDatabaseDS"
principalsQuery="select passwd from Users username where username=?"
rolesQuery="select userRoles, 'Roles' from UserRoles where username=?"
;

};

The corresponding XMLLoginConfig format is:

<policy>
<application-policy name="testDB">

<authentication>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"

flag="required">
<module-option name="dsJndiName">java:/MyDatabaseDS</module-option>
<module-option name="principalsQuery">

select passwd from Users username where username=?</module-option>
<module-option name="rolesQuery">

select userRoles, 'Roles' from UserRoles where username=?</module-option>
</login-module>

</authentication>
</application-policy>

</policy>

8.4.6.5. BaseCertLoginModule

This is a login module which authenticates users based on X509 certificates. A typical usecase for this login
module is CLIENT-CERT authentication in the web tier. This login module only performs authentication. You
need to combine it with another login module capable of acquiring the authorization roles to completely define
access to a secured web or EJB component. Two subclasses of this login module, CertRolesLoginModule and
DatabaseCertLoginModule extend the behavior to obtain the authorization roles from either a properties file or
database.

The BaseCertLoginModule needs a KeyStore to perform user validation. This is obtained through a
org.jboss.security.SecurityDomain implementation. Typically, the SecurityDomain implementation is con-
figured using the org.jboss.security.plugins.JaasSecurityDomain MBean as shown in this jboss-service.xml
configuration fragment:

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.web:service=SecurityDomain">

<constructor>
<arg type="java.lang.String" value="jmx-console"/>

</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>
<attribute name="KeyStorePass">unit-tests-server</attribute>

</mbean>

Security on JBoss

304

This creates a security domain with the name jmx-console whose SecurityDomain implementation is available
via JNDI under the name java:/jaas/jmx-console following the JBossSX security domain naming pattern. To
secure a web application such as the jmx-console.war using client certs and role based authorization, one would
first modify the web.xml to declare the resources to be secured, along with the allowed roles and security do-
main to be used for authentication and authorization.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
...
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>An example security config that only allows users with

the role JBossAdmin to access the HTML JMX console web
application </description>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>CLIENT-CERT</auth-method>
<realm-name>JBoss JMX Console</realm-name>

</login-config>
<security-role>

<role-name>JBossAdmin</role-name>
</security-role>

</web-app>

Next we, need to specify the JBoss security domain in jboss-web.xml:

<jboss-web>
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

Finally, you need to define the login module configuration for the jmx-console security domain you just spe-
cified. This is done in the conf/login-config.xml file.

<application-policy name="jmx-console">
<authentication>

<login-module code="org.jboss.security.auth.spi.BaseCertLoginModule"
flag="required">

<module-option name="password-stacking">useFirstPass</module-option>
<module-option name="securityDomain">java:/jaas/jmx-console</module-option>

</login-module>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag="required">
<module-option name="password-stacking">useFirstPass</module-option>
<module-option name="usersProperties">jmx-console-users.properties</module-option>
<module-option name="rolesProperties">jmx-console-roles.properties</module-option>

</login-module>
</authentication>

</application-policy>

Here the BaseCertLoginModule is used for authentication of the client cert, and the UsersRolesLoginModule is
only used for authorization due to the password-stacking=useFirstPass option. Both the local-

host.keystore and the jmx-console-roles.properties need an entry that maps to the principal associated
with the client cert. By default, the principal is created using the client certificate distinguished name. Consider

Security on JBoss

305

2The ProxyLoginModule is generally not needed in JBoss3.x since we have our own JAAS implementation that solves this issue, and the
JDK1.4 JAAS implementation behaves in the same way. The ProxyLoginModule remains for backward compatability.

the following certificate:

[starksm@banshee9100 conf]$ keytool -printcert -file unit-tests-client.export
Owner: CN=unit-tests-client, OU=JBoss Inc., O=JBoss Inc., ST=Washington, C=US
Issuer: CN=jboss.com, C=US, ST=Washington, L=Snoqualmie Pass, EMAILADDRESS=admin
@jboss.com, OU=QA, O=JBoss Inc.
Serial number: 100103
Valid from: Wed May 26 07:34:34 PDT 2004 until: Thu May 26 07:34:34 PDT 2005
Certificate fingerprints:

MD5: 4A:9C:2B:CD:1B:50:AA:85:DD:89:F6:1D:F5:AF:9E:AB
SHA1: DE:DE:86:59:05:6C:00:E8:CC:C0:16:D3:C2:68:BF:95:B8:83:E9:58

The localhost.keystore would need this cert stored with an alias of CN=unit-tests-client, OU=JBoss

Inc., O=JBoss Inc., ST=Washington, C=US and the jmx-console-roles.properties would also need an
entry for the same entry. Since the DN contains many characters that are normally treated as delimiters, you
will need to escape the problem characters using a backslash ('\') as shown here:

A sample roles.properties file for use with the UsersRolesLoginModule
CN\=unit-tests-client,\ OU\=JBoss\ Inc.,\ O\=JBoss\ Inc.,\ ST\=Washington,\ C\=US=JBossAdmin
admin=JBossAdmin

8.4.6.6. org.jboss.security.auth.spi.ProxyLoginModule

The ProxyLoginModule is a login module that loads a delegate LoginModule using the current thread context
class loader. The purpose of this module is to work around the current JAAS 1.0 class loader limitation that re-
quires LoginModules to be on the system classpath2. Some custom LoginModules use classes that are loaded
from the JBoss server lib/ext directory and these are not available if the LoginModule is placed on the system
classpath. To work around this limitation you use the ProxyLoginModule to bootstrap the custom LoginModule.
The ProxyLoginModule has one required configuration option called moduleName. It specifies the fully qualified
class name of the LoginModule implementation that is to be bootstrapped. Any number of additional configura-
tion options may be specified, and they will be passed to the bootstrapped login module.

As an example, consider a custom login module that makes use of some service that is loaded from the JBoss
lib/ext directory. The class name of the custom login module is com.biz.CustomServiceLoginModule. A
suitable Sun legacy format ProxyLoginModule configuration entry for bootstrapping this custom login module
would be:

testProxy {
org.jboss.security.auth.spi.ProxyLoginModule required
moduleName=com.biz.CustomServiceLoginModule
customOption1=value1
customOption2=value2
customOption3=value3;

};

The corresponding XMLLoginConfig format is:

<policy>
<application-policy name="testProxy">

<authentication>
<login-module code="org.jboss.security.auth.spi.ProxyLoginModule"

flag="required">
<module-option name="moduleName">

com.biz.CustomServiceLoginModule
</module-option>
<module-option name="customOption1">value1</module-option>
<module-option name="customOption2">value2</module-option>
<module-option name="customOption3">value3</module-option>

</login-module>
</authentication>

Security on JBoss

306

</application-policy>
</policy>

8.4.6.7. org.jboss.security.auth.spi.RunAsLoginModule

JBoss has a helper login module called RunAsLoginModule that pushes a run as role for the duration of the login
phase of authentication, and pops the run as role in either the commit or abort phase. The purpose of this login
module is to provide a role for other login modules that need to access secured resources in order to perform
their authentication. An example would be a login module that accesses an secured EJB. This login module
must be configured ahead of the login module(s) that need a run as role established.

The only login module configuration option is:

• roleName: the name of the role to use as the run as role during login phase. If not specified a default of
nobody is used.

8.4.6.8. org.jboss.security.ClientLoginModule

The ClientLoginModule is an implementation of LoginModule for use by JBoss clients for the establishment of
the caller identity and credentials. This simply sets the
org.jboss.security.SecurityAssociation.principal to the value of the NameCallback filled in by the
callbackhandler, and the org.jboss.security.SecurityAssociation.credential to the value of the Pass-

wordCallback filled in by the callbackhandler. This is the only supported mechanism for a client to establish
the current thread's caller. Both stand-alone client applications and server environments, acting as JBoss EJB
clients where the security environment has not been configured to use JBossSX transparently, need to use the
ClientLoginModule. Of course, you could always set the org.jboss.security.SecurityAssociation inform-
ation directly, but this is considered an internal API that is subject to change without notice.

Note that this login module does not perform any authentication. It merely copies the login information
provided to it into the JBoss server EJB invocation layer for subsequent authentication on the server. If you
need to perform client-side authentication of users you would need to configure another login module in addi-
tion to the ClientLoginModule.

The supported login module configuration options include the following:

• multi-threaded=true|false: When the multi-threaded option is set to true, each login thread has its own
principal and credential storage. This is useful in client environments where multiple user identities are act-
ive in separate threads. When true, each separate thread must perform its own login. When set to false the
login identity and credentials are global variables that apply to all threads in the VM. The default for this
option is false.

• password-stacking=useFirstPass: When password-stacking option is set, this module first looks for a
shared username and password using javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map. This allows a
module configured prior to this one to establish a valid username and password that should be passed to
JBoss. You would use this option if you want to perform client-side authentication of clients using some
other login module such as the LdapLoginModule.

• restore-login-identity=[true|false]: When restore-login-identity is true, the SecurityAssociation

principal and credential seen on entry to the login() method are saved and restored on either abort or
logout. When false (the default), the abort and logout simply clear the SecurityAssociation. A restore-lo-

gin-identity of true is needed if one need to change identities and then restore the original caller identity.

Security on JBoss

307

A sample login configuration for ClientLoginModule is the default configuration entry found in the JBoss dis-
tribution client/auth.conf file. The configuration is:

other {
// Put your login modules that work without jBoss here

// jBoss LoginModule
org.jboss.security.ClientLoginModule required;

// Put your login modules that need jBoss here
};

8.4.7. Writing Custom Login Modules

If the login modules bundled with the JBossSX framework do not work with your security environment, you
can write your own custom login module implementation that does.

Recall from the section on the JaasSecurityManager architecture that the JaasSecurityManager expected a
particular usage pattern of the Subject principals set. You need to understand the JAAS Subject class's inform-
ation storage features and the expected usage of these features to be able to write a login module that works
with the JaasSecurityManager. This section examines this requirement and introduces two abstract base Lo-

ginModule implementations that can help you implement your own custom login modules.

You can obtain security information associated with a Subject in six ways using the following methods:

java.util.Set getPrincipals()
java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()
java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()
java.util.Set getPublicCredentials(java.lang.Class c)

For Subject identities and roles, JBossSX has selected the most natural choice: the principals sets obtained via
getPrincipals() and getPrincipals(java.lang.Class). The usage pattern is as follows:

• User identities (username, social security number, employee ID, and so on) are stored as
java.security.Principal objects in the SubjectPrincipals set. The Principal implementation that rep-
resents the user identity must base comparisons and equality on the name of the principal. A suitable imple-
mentation is available as the org.jboss.security.SimplePrincipal class. Other Principal instances may
be added to the SubjectPrincipals set as needed.

• The assigned user roles are also stored in the Principals set, but they are grouped in named role sets using
java.security.acl.Group instances. The Group interface defines a collection of Principals and/or
Groups, and is a subinterface of java.security.Principal. Any number of role sets can be assigned to a
Subject. Currently, the JBossSX framework uses two well-known role sets with the names Roles and
CallerPrincipal. The Roles Group is the collection of Principals for the named roles as known in the
application domain under which the Subject has been authenticated. This role set is used by methods like
the EJBContext.isCallerInRole(String), which EJBs can use to see if the current caller belongs to the
named application domain role. The security interceptor logic that performs method permission checks also
uses this role set. The CallerPrincipalGroup consists of the single Principal identity assigned to the user
in the application domain. The EJBContext.getCallerPrincipal() method uses the CallerPrincipal to
allow the application domain to map from the operation environment identity to a user identity suitable for
the application. If a Subject does not have a CallerPrincipalGroup, the application identity is the same as
operational environment identity.

Security on JBoss

308

8.4.7.1. Support for the Subject Usage Pattern

To simplify correct implementation of the Subject usage patterns described in the preceding section, JBossSX
includes two abstract login modules that handle the population of the authenticated Subject with a template
pattern that enforces correct Subject usage. The most generic of the two is the
org.jboss.security.auth.spi.AbstractServerLoginModule class. It provides a concrete implementation of
the javax.security.auth.spi.LoginModule interface and offers abstract methods for the key tasks specific to
an operation environment security infrastructure. The key details of the class are highlighted in the following
class fragment. The JavaDoc comments detail the responsibilities of subclasses.

package org.jboss.security.auth.spi;
/**
* This class implements the common functionality required for a JAAS
* server-side LoginModule and implements the JBossSX standard
* Subject usage pattern of storing identities and roles. Subclass
* this module to create your own custom LoginModule and override the
* login(), getRoleSets(), and getIdentity() methods.
*/

public abstract class AbstractServerLoginModule
implements javax.security.auth.spi.LoginModule

{
protected Subject subject;
protected CallbackHandler callbackHandler;
protected Map sharedState;
protected Map options;
protected Logger log;

/** Flag indicating if the shared credential should be used */
protected boolean useFirstPass;
/**
* Flag indicating if the login phase succeeded. Subclasses that
* override the login method must set this to true on successful
* completion of login
*/
protected boolean loginOk;

// ...
/**
* Initialize the login module. This stores the subject,
* callbackHandler and sharedState and options for the login
* session. Subclasses should override if they need to process
* their own options. A call to super.initialize(...) must be
* made in the case of an override.
*
* <p>
* The options are checked for the password-stacking parameter.
* If this is set to "useFirstPass", the login identity will be taken from the
* <code>javax.security.auth.login.name</code> value of the sharedState map,
* and the proof of identity from the
* <code>javax.security.auth.login.password</code> value of the sharedState map.
*
* @param subject the Subject to update after a successful login.
* @param callbackHandler the CallbackHandler that will be used to obtain the
* the user identity and credentials.
* @param sharedState a Map shared between all configured login module instances
* @param options the parameters passed to the login module.
*/
public void initialize(Subject subject,

CallbackHandler callbackHandler,
Map sharedState,
Map options)

{
// ...

}

/**

Security on JBoss

309

* Looks for javax.security.auth.login.name and
* javax.security.auth.login.password values in the sharedState
* map if the useFirstPass option was true and returns true if
* they exist. If they do not or are null this method returns
* false.
* Note that subclasses that override the login method
* must set the loginOk ivar to true if the login succeeds in
* order for the commit phase to populate the Subject. This
* implementation sets loginOk to true if the login() method
* returns true, otherwise, it sets loginOk to false.
*/
public boolean login()

throws LoginException
{

// ...
}

/**
* Overridden by subclasses to return the Principal that
* corresponds to the user primary identity.
*/
abstract protected Principal getIdentity();

/**
* Overridden by subclasses to return the Groups that correspond
* to the role sets assigned to the user. Subclasses should
* create at least a Group named "Roles" that contains the roles
* assigned to the user. A second common group is
* "CallerPrincipal," which provides the application identity of
* the user rather than the security domain identity.
*
* @return Group[] containing the sets of roles
*/
abstract protected Group[] getRoleSets() throws LoginException;

}

You'll need to to pay attention to the loginOk instance variable. This must be set to true if the login succeeds,
false otherwise by any subclasses that override the login method. Failure to set this variable correctly will result
in the commit method either not updating the Subject when it should, or updating the Subject when it should
not. Tracking the outcome of the login phase was added to allow login module to be chained together with con-
trol flags that do not require that the login module succeed in order for the overall login to succeed.

The second abstract base login module suitable for custom login modules is the
org.jboss.security.auth.spi.UsernamePasswordLoginModule. The login module further simplifies custom
login module implementation by enforcing a string-based username as the user identity and a char[] password
as the authentication credential. It also supports the mapping of anonymous users (indicated by a null username
and password) to a Principal with no roles. The key details of the class are highlighted in the following class
fragment. The JavaDoc comments detail the responsibilities of subclasses.

package org.jboss.security.auth.spi;

/**
* An abstract subclass of AbstractServerLoginModule that imposes a
* an identity == String username, credentials == String password
* view on the login process. Subclasses override the
* getUsersPassword() and getUsersRoles() methods to return the
* expected password and roles for the user.
*/

public abstract class UsernamePasswordLoginModule
extends AbstractServerLoginModule

{
/** The login identity */
private Principal identity;
/** The proof of login identity */
private char[] credential;
/** The principal to use when a null username and password are seen */

Security on JBoss

310

private Principal unauthenticatedIdentity;

/**
* The message digest algorithm used to hash passwords. If null then
* plain passwords will be used. */
private String hashAlgorithm = null;

/**
* The name of the charset/encoding to use when converting the
* password String to a byte array. Default is the platform's
* default encoding.
*/
private String hashCharset = null;

/** The string encoding format to use. Defaults to base64. */
private String hashEncoding = null;

// ...

/**
* Override the superclass method to look for an
* unauthenticatedIdentity property. This method first invokes
* the super version.
*
* @param options,
* @option unauthenticatedIdentity: the name of the principal to
* assign and authenticate when a null username and password are
* seen.
*/
public void initialize(Subject subject,

CallbackHandler callbackHandler,
Map sharedState,
Map options)

{
super.initialize(subject, callbackHandler, sharedState,

options);
// Check for unauthenticatedIdentity option.
Object option = options.get("unauthenticatedIdentity");
String name = (String) option;
if (name != null) {

unauthenticatedIdentity = new SimplePrincipal(name);
}

}

// ...

/**
* A hook that allows subclasses to change the validation of the
* input password against the expected password. This version
* checks that neither inputPassword or expectedPassword are null
* and that inputPassword.equals(expectedPassword) is true;
*
* @return true if the inputPassword is valid, false otherwise.
*/
protected boolean validatePassword(String inputPassword,

String expectedPassword)
{

if (inputPassword == null || expectedPassword == null) {
return false;

}
return inputPassword.equals(expectedPassword);

}

/**
* Get the expected password for the current username available
* via the getUsername() method. This is called from within the
* login() method after the CallbackHandler has returned the
* username and candidate password.
*
* @return the valid password String
*/

Security on JBoss

311

abstract protected String getUsersPassword()
throws LoginException;

}

The choice of subclassing the AbstractServerLoginModule versus UsernamePasswordLoginModule is simply
based on whether a String based username and String credential are usable for the authentication technology
you are writing the login module for. If the string based semantic is valid, then subclass UsernamePasswordLo-

ginModule, else subclass AbstractServerLoginModule.

The steps you are required to perform when writing a custom login module are summerized in the following de-
pending on which base login module class you choose. When writing a custom login module that integrates
with your security infrastructure, you should start by subclassing AbstractServerLoginModule or User-

namePasswordLoginModule to ensure that your login module provides the authenticated Principal information
in the form expected by the JBossSX security manager.

When subclassing the AbstractServerLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

• boolean login(): to perform the authentication activity. Be sure to set the loginOk instance variable to
true if login succeeds, false if it fails.

• Principal getIdentity(): to return the Principal object for the user authenticated by the log() step.

• Group[] getRoleSets(): to return at least one Group named Roles that contains the roles assigned to the
Principal authenticated during login(). A second common Group is named CallerPrincipal and
provides the user's application identity rather than the security domain identity.

When subclassing the UsernamePasswordLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

• Group[] getRoleSets(): to return at least one Group named Roles that contains the roles assigned to the
Principal authenticated during login(). A second common Group is named CallerPrincipal and
provides the user's application identity rather than the security domain identity.

• String getUsersPassword(): to return the expected password for the current username available via the
getUsername() method. The getUsersPassword() method is called from within login() after the call-

backhandler returns the username and candidate password.

8.4.7.2. A Custom LoginModule Example

In this section we will develop a custom login module example. It will extend the UsernamePasswordLoginMod-

ule and obtains a user's password and role names from a JNDI lookup. The idea is that there is a JNDI context
that will return a user's password if you perform a lookup on the context using a name of the form password/

<username> where <username> is the current user being authenticated. Similary, a lookup of the form roles/

<username> returns the requested user's roles.

The source code for the example is located in the src/main/org/jboss/chap8/ex2 directory of the book ex-
amples. Example 8.12 shows the source code for the JndiUserAndPass custom login module. Note that because
this extends the JBoss UsernamePasswordLoginModule, all the JndiUserAndPass does is obtain the user's pass-
word and roles from the JNDI store. The JndiUserAndPass does not concern itself with the JAAS LoginModule

operations.

Security on JBoss

312

Example 8.12. A JndiUserAndPass custom login module

package org.jboss.chap8.ex2;

import java.security.acl.Group;
import java.util.Map;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;

import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;

/**
* An example custom login module that obtains passwords and roles
* for a user from a JNDI lookup.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.15 $

*/
public class JndiUserAndPass

extends UsernamePasswordLoginModule
{

/** The JNDI name to the context that handles the password/username lookup */
private String userPathPrefix;
/** The JNDI name to the context that handles the roles/ username lookup */
private String rolesPathPrefix;

/**
* Override to obtain the userPathPrefix and rolesPathPrefix options.
*/
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

super.initialize(subject, callbackHandler, sharedState, options);
userPathPrefix = (String) options.get("userPathPrefix");
rolesPathPrefix = (String) options.get("rolesPathPrefix");

}

/**
* Get the roles the current user belongs to by querying the
* rolesPathPrefix + '/' + super.getUsername() JNDI location.
*/
protected Group[] getRoleSets() throws LoginException
{

try {
InitialContext ctx = new InitialContext();
String rolesPath = rolesPathPrefix + '/' + super.getUsername();

String[] roles = (String[]) ctx.lookup(rolesPath);
Group[] groups = {new SimpleGroup("Roles")};
log.info("Getting roles for user="+super.getUsername());
for(int r = 0; r < roles.length; r ++) {

SimplePrincipal role = new SimplePrincipal(roles[r]);
log.info("Found role="+roles[r]);
groups[0].addMember(role);

}
return groups;

} catch(NamingException e) {
log.error("Failed to obtain groups for

user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

}
}

/**

Security on JBoss

313

* Get the password of the current user by querying the
* userPathPrefix + '/' + super.getUsername() JNDI location.
*/
protected String getUsersPassword()

throws LoginException
{

try {
InitialContext ctx = new InitialContext();
String userPath = userPathPrefix + '/' + super.getUsername();
log.info("Getting password for user="+super.getUsername());
String passwd = (String) ctx.lookup(userPath);
log.info("Found password="+passwd);
return passwd;

} catch(NamingException e) {
log.error("Failed to obtain password for

user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

}
}

}

The details of the JNDI store are found in the org.jboss.chap8.ex2.service.JndiStore MBean. This service
binds an ObjectFactory that returns a javax.naming.Context proxy into JNDI. The proxy handles lookup op-
erations done against it by checking the prefix of the lookup name against password and roles. When the name
begins with password, a user's password is being requested. When the name begins with roles the user's roles
are being requested. The example implementation always returns a password of theduke and an array of roles
names equal to {"TheDuke", "Echo"} regardless of what the username is. You can experiment with other im-
plementations as you wish.

The example code includes a simple session bean for testing the custom login module. To build, deploy and run
the example, execute the following command from the examples directory. Make sure you have the JBoss serv-
er running. The key lines from the client are given in Example 8.13 while the server side operation of the is
shown in Example 8.14.

Example 8.13. The chap8-ex2 secured client access output

[nr@toki examples]$ ant -Dchap=chap8 -Dex=2 run-example
Buildfile: build.xml
...
run-example2:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Login with username=jduke, password=theduke
[java] [INFO,ExClient] Looking up EchoBean2
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello

Example 8.14. The chap8-ex2 server side behavior of the JndiUserAndPass

17:48:11,458 INFO [EjbModule] Deploying EchoBean2
17:48:11,890 INFO [JndiStore] Start, bound security/store
17:48:11,896 INFO [SecurityConfig] Using JAAS AuthConfig: jar:file:/private/tmp/jboss-3.2.6/s
erver/default/tmp/deploy/tmp22821chap8-ex2.jar-contents/chap8-ex2.sar!/META-INF/login-config.x
ml
17:48:12,355 INFO [EJBDeployer] Deployed: file:/private/tmp/jboss-3.2.6/server/default/deploy
/chap8-ex2.jar

Security on JBoss

314

The choice of using the JndiUserAndPass custom login module for the server side authentication of the user is
determined by the login configuration for the example security domain. The EJB JAR META-INF/jboss.xml

descriptor sets the security domain and the sar META-INF/login-config.xml descriptor defines the login mod-
ule configuration. The contents of these descriptors are shown in Example 8.15.

Example 8.15. The chap8-ex2 security domain and login module configuration

<?xml version="1.0"?>
<jboss>

<security-domain>java:/jaas/chap8-ex2</security-domain>
</jboss>

Example 8.16. The login-config.xml configuration fragment for the chap8-ex2 application

<application-policy name = "chap8-ex2">
<authentication>

<login-module code="org.jboss.chap8.ex2.JndiUserAndPass"
flag="required">

<module-option name = "userPathPrefix">/security/store/password</module-option>
<module-option name = "rolesPathPrefix">/security/store/roles</module-option>

</login-module>
</authentication>

</application-policy>

8.4.8. The DynamicLoginConfig service

Security domains defined in the login-config.xml file are essentially static. They are read when JBoss starts
up, but there is no easy way to add a new security domain or change the definition for an existing one. The Dy-

namicLoginConfig service allows you to dynamically deploy security domains. This allows you to specify
JAAS login configuration as part of a deployment (or just as a standalone service) rather than having to edit the
static login-config.xml file.

The service supports the following attributes:

• AuthConfig: The resource path to the JAAS login configuration file to use. This defaults to login-con-

fig.xml

• LoginConfigService: the XMLLoginConfig service name to use for loading. This service must support a
String loadConfig(URL) operation to load the configurations.

• SecurityManagerService: The SecurityManagerService name used to flush the registered security do-
mains. This service must support a flushAuthenticationCache(String) operation to flush the case for the
argument security domain. Setting this triggers the flush of the authentication caches when the service is
stopped.

Here is an examble MBean definition using the DynamicLoginConfig service.

<server>
<mbean code="org.jboss.security.auth.login.DynamicLoginConfig" name="...">

<attribute name="AuthConfig">login-config.xml</attribute>
<!-- The service which supports dynamic processing of login-config.xml
configurations.

-->

Security on JBoss

315

<depends optional-attribute-name="LoginConfigService">
jboss.security:service=XMLLoginConfig </depends>

<!-- Optionally specify the security mgr service to use when
this service is stopped to flush the auth caches of the domains
registered by this service.

-->
<depends optional-attribute-name="SecurityManagerService">

jboss.security:service=JaasSecurityManager </depends>
</mbean>

</server>

This will load the specified AuthConfig resource using the specified LoginConfigService MBean by invoking
loadConfig with the apropriate resource URL. When the service is stopped the configurations are removed.
The resource specified may be either an XML file, or a Sun JAAS login configuration.

8.5. The Secure Remote Password (SRP) Protocol

The SRP protocol is an implementation of a public key exchange handshake described in the Internet standards
working group request for comments 2945(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication mechanism known as the Secure
Remote Password (SRP) protocol. This mechanism is suitable for negotiating secure connections using a user-
supplied password, while eliminating the security problems traditionally associated with reusable passwords.
This system also performs a secure key exchange in the process of authentication, allowing security layers
(privacy and/or integrity protection) to be enabled during the session. Trusted key servers and certificate infra-
structures are not required, and clients are not required to store or manage any long-term keys. SRP offers both
security and deployment advantages over existing challenge-response techniques, making it an ideal drop-in re-
placement where secure password authentication is needed.

Note: The complete RFC2945 specification can be obtained from http://www.rfc-editor.org/rfc.html. Additional
information on the SRP algorithm and its history can be found at
http://www-cs-students.stanford.edu/~tjw/srp/.

SRP is similar in concept and security to other public key exchange algorithms, such as Diffie-Hellman and
RSA. SRP is based on simple string passwords in a way that does not require a clear text password to exist on
the server. This is in contrast to other public key-based algorithms that require client certificates and the corres-
ponding certificate management infrastructure.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The concept of public
key algorithms is that you have two keys, one public that is available to everyone, and one that is private and
known only to you. When someone wants to send encrypted information to you, then encrpyt the information
using your public key. Only you are able to decrypt the information using your private key. Contrast this with
the more traditional shared password based encryption schemes that require the sender and receiver to know the
shared password. Public key algorithms eliminate the need to share passwords. For more information on public
key algorithms as well as numerous other cryptographic algorithms, see Applied Cryptography, Second Edition
by Bruce Schneier, ISBN 0-471-11709-9.

The JBossSX framework includes an implementation of SRP that consists of the following elements:

• An implementation of the SRP handshake protocol that is independent of any particular client/server pro-
tocol

• An RMI implementation of the handshake protocol as the default client/server SRP implementation

Security on JBoss

316

http://www.rfc-editor.org/rfc.html
http://www-cs-students.stanford.edu/~tjw/srp/

• A client side JAAS LoginModule implementation that uses the RMI implementation for use in authenticat-
ing clients in a secure fashion

• A JMX MBean for managing the RMI server implementation. The MBean allows the RMI server imple-
mentation to be plugged into a JMX framework and externalizes the configuration of the verification in-
formation store. It also establishes an authentication cache that is bound into the JBoss server JNDI
namespace.

• A server side JAAS LoginModule implementation that uses the authentication cache managed by the SRP
JMX MBean.

Figure 8.10 gives a diagram of the key components involved in the JBossSX implementation of the SRP client/
server framework.

Figure 8.10. The JBossSX components of the SRP client-server framework.

On the client side, SRP shows up as a custom JAAS LoginModule implementation that communicates to the au-
thentication server through an org.jboss.security.srp.SRPServerInterface proxy. A client enables authen-
tication using SRP by creating a login configuration entry that includes the
org.jboss.security.srp.jaas.SRPLoginModule. This module supports the following configuration options:

• principalClassName: This option is no longer supported. The principal class is now always

Security on JBoss

317

org.jboss.security.srp.jaas.SRPPrincipal.

• srpServerJndiName: The JNDI name of the SRPServerInterface object to use for communicating with
the SRP authentication server. If both srpServerJndiName and srpServerRmiUrl options are specified, the
srpServerJndiName is tried before srpServerRmiUrl.

• srpServerRmiUrl: The RMI protocol URL string for the location of the SRPServerInterface proxy to use
for communicating with the SRP authentication server.

• externalRandomA: A true/false flag indicating if the random component of the client public key A should
come from the user callback. This can be used to input a strong cryptographic random number coming from
a hardware token for example.

• hasAuxChallenge: A true/false flag indicating an that a string will be sent to the server as an additional
challenge for the server to validate. If the client session supports an encryption cipher then a temporary
cipher will be created using the session private key and the challenge object sent as a
javax.crypto.SealedObject.

• multipleSessions: a true/false flag indicating if a given client may have multiple SRP login sessions active
simultaneously.

Any other options passed in that do not match one of the previous named options is treated as a JNDI property
to use for the environment passed to the IntialContext constructor. This is useful if the SRP server interface is
not available from the default IntialContext.

The SRPLoginModule needs to be configured along with the standard ClientLoginModule to allow the SRP au-
thentication credentials to be used for validation of access to security J2EE components. An example login con-
figuration entry that demonstrates such a setup is:

srp {
org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="SRPServerInterface"
;

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

On the JBoss server side, there are two MBeans that manage the objects that collectively make up the SRP
server. The primary service is the org.jboss.security.srp.SRPService MBean, and it is responsible for ex-
posing an RMI accessible version of the SRPServerInterface as well as updating the SRP authentication session
cache. The configurable SRPService MBean attributes include the following:

• JndiName: The JNDI name from which the SRPServerInterface proxy should be available. This is the loca-
tion where the SRPService binds the serializable dynamic proxy to the SRPServerInterface. If not spe-
cified it defaults to srp/SRPServerInterface.

• VerifierSourceJndiName: The JNDI name of the SRPVerifierSource implementation that should be used
by the SRPService. If not set it defaults to srp/DefaultVerifierSource.

• AuthenticationCacheJndiName: The JNDI name under which the authentication
org.jboss.util.CachePolicy implementation to be used for caching authentication information is bound.
The SRP session cache is made available for use through this binding. If not specified it defaults to srp/

AuthenticationCache.

Security on JBoss

318

• ServerPort: RMI port for the SRPRemoteServerInterface. If not specified it defaults to 10099.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory implementation
class name used during the export of the SRPServerInterface. If not specified the default RMIClientSock-
etFactory is used.

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory implementation
class name used during the export of the SRPServerInterface. If not specified the default RMIServerSock-
etFactory is used.

• AuthenticationCacheTimeout: Specifies the timed cache policy timeout in seconds. If not specified this
defaults to 1800 seconds(30 minutes).

• AuthenticationCacheResolution: Specifies the timed cache policy resolution in seconds. This controls the
interval between checks for timeouts. If not specified this defaults to 60 seconds(1 minute).

• RequireAuxChallenge: Set if the client must supply an auxillary challenge as part of the verify phase. This
gives control over whether the SRPLoginModule configuration used by the client must have the useAux-

Challenge option enabled.

• OverwriteSessions: A flag indicating if a successful user auth for an existing session should overwrite the
current session. This controls the behavior of the server SRP session cache when clients have not enabled
the multiple session per user mode. The default is false meaning that the second attempt by a user to authen-
tication will succeeed, but the resulting SRP session will not overwrite the previous SRP session state.

The one input setting is the VerifierSourceJndiName attribute. This is the location of the SRP password in-
formation store implementation that must be provided and made available through JNDI. The
org.jboss.security.srp SRPVerifierStoreService is an example MBean service that binds an implementa-
tion of the SRPVerifierStore interface that uses a file of serialized objects as the persistent store. Although not
realistic for a production environment, it does allow for testing of the SRP protocol and provides an example of
the requirements for an SRPVerifierStore service. The configurable SRPVerifierStoreService MBean at-
tributes include the following:

• JndiName: The JNDI name from which the SRPVerifierStore implementation should be available. If not
specified it defaults to srp/DefaultVerifierSource.

• StoreFile: The location of the user password verifier serialized object store file. This can be either a URL
or a resource name to be found in the classpath. If not specified it defaults to SRPVerifierStore.ser.

The SRPVerifierStoreService MBean also supports addUser and delUser operations for addition and dele-
tion of users. The signatures are:

public void addUser(String username, String password) throws IOException;
public void delUser(String username) throws IOException;

An example configuration of these services is presented in Section 8.5.

8.5.1. Providing Password Information for SRP

The default implementation of the SRPVerifierStore interface is not likely to be suitable for you production
security environment as it requires all password hash information to be available as a file of serialized objects.
You need to provide an MBean service that provides an implementation of the SRPVerifierStore interface that
integrates with your existing security information stores. The SRPVerifierStore interface is shown in.

Security on JBoss

319

Example 8.17. The SRPVerifierStore interface

package org.jboss.security.srp;

import java.io.IOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{

public static class VerifierInfo implements Serializable
{

/**
* The username the information applies to. Perhaps redundant
* but it makes the object self contained.
*/
public String username;

/** The SRP password verifier hash */
public byte[] verifier;
/** The random password salt originally used to verify the password */
public byte[] salt;
/** The SRP algorithm primitive generator */
public byte[] g;
/** The algorithm safe-prime modulus */
public byte[] N;

}

/**
* Get the indicated user's password verifier information.
*/
public VerifierInfo getUserVerifier(String username)

throws KeyException, IOException;
/**
* Set the indicated users' password verifier information. This
* is equivalent to changing a user's password and should
* generally invalidate any existing SRP sessions and caches.
*/
public void setUserVerifier(String username, VerifierInfo info)

throws IOException;

/**
* Verify an optional auxillary challenge sent from the client to
* the server. The auxChallenge object will have been decrypted
* if it was sent encrypted from the client. An example of a
* auxillary challenge would be the validation of a hardware token
* (SafeWord, SecureID, iButton) that the server validates to
* further strengthen the SRP password exchange.
*/
public void verifyUserChallenge(String username, Object auxChallenge)

throws SecurityException;
}

The primary function of a SRPVerifierStore implementation is to provide access to the SRPVerifier-

Store.VerifierInfo object for a given username. The getUserVerifier(String) method is called by the
SRPService at that start of a user SRP session to obtain the parameters needed by the SRP algorithm. The ele-
ments of the VerifierInfo objects are:

• username: The user's name or id used to login.

• verifier: This is the one-way hash of the password or PIN the user enters as proof of their identity. The
org.jboss.security.Util class has a calculateVerifier method that performs that password hashing al-
gorithm. The output password H(salt | H(username | ':' | password)) as defined by RFC2945. Here
H is the SHA secure hash function. The username is converted from a string to a byte[] using the UTF-8

Security on JBoss

320

encoding.

• salt: This is a random number used to increase the difficulty of a brute force dictionary attack on the verifi-
er password database in the event that the database is compromised. It is a value that should be generated
from a cryptographically strong random number algorithm when the user's existing clear-text password is
hashed.

• g: The SRP algorithm primitive generator. In general this can be a well known fixed parameter rather than a
per-user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for g includ-
ing a good default which can obtained via SRPConf.getDefaultParams().g().

• N: The SRP algorithm safe-prime modulus. In general this can be a well known fixed parameter rather than
a per-user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for N in-
cluding a good default which can obtained via SRPConf.getDefaultParams().N().

So, step 1 of integrating your existing password store is the creation of a hashed version of the password in-
formation. If your passwords are already store in an irreversible hashed form, then this can only be done on a
per-user basis as part of an upgrade proceedure for example. Note that the setUserVerifier(String, Veri-

fierInfo) method is not used by the current SRPSerivce and may be implemented as noop method, or even
one that throws an exception stating that the store is read-only.

Step 2 is the creation of the custom SRPVerifierStore interface implementation that knows how to obtain the
VerifierInfo from the store you created in step 1. The verifyUserChallenge(String, Object) method of
the interface is only called if the client SRPLoginModule configuration specifies the hasAuxChallenge option.
This can be used to integrate existing hardware token based schemes like SafeWord or Radius into the SRP al-
gorithm.

Step 3 is the creation of an MBean that makes the step 2 implementation of the SRPVerifierStore interface
available via JNDI, and exposes any configurable parameters you need. In addition to the default
org.jboss.security.srp.SRPVerifierStoreService example, the SRP example presented later in this
chapter provides a Java properties file based SRPVerifierStore implementation. Between the two examples
you should have enough to integrate your security store.

8.5.2. Inside of the SRP algorithm

The appeal of the SRP algorithm is that is allows for mutual authentication of client and server using simple
text passwords without a secure communication channel. You might be wondering how this is done. If you
want the complete details and theory behind the algorithm, refer to the SRP references mentioned in a note
earlier. There are six steps that are performed to complete authentication:

1. The client side SRPLoginModule retrieves the SRPServerInterface instance for the remote authentication
server from the naming service.

2. The client side SRPLoginModule next requests the SRP parameters associated with the username attempt-
ing the login. There are a number of parameters involved in the SRP algorithm that must be chosen when
the user password is first transformed into the verifier form used by the SRP algorithm. Rather than hard-
coding the parameters (which could be done with minimal security risk), the JBossSX implementation al-
lows a user to retrieve this information as part of the exchange protocol. The getSRPParamet-

ers(username) call retrieves the SRP parameters for the given username.

3. The client side SRPLoginModule begins an SRP session by creating an SRPClientSession object using the
login username, clear-text password, and SRP parameters obtained from step 2. The client then creates a

Security on JBoss

321

random number A that will be used to build the private SRP session key. The client then initializes the
server side of the SRP session by invoking the SRPServerInterface.init method and passes in the user-
name and client generated random number A. The server returns its own random number B. This step cor-
responds to the exchange of public keys.

4. The client side SRPLoginModule obtains the private SRP session key that has been generated as a result of
the previous messages exchanges. This is saved as a private credential in the login Subject. The server
challenge response M2 from step 4 is verified by invoking the SRPClientSession.verify method. If this
succeeds, mutual authentication of the client to server, and server to client have been completed.The client
side SRPLoginModule next creates a challenge M1 to the server by invoking SRPClientSession.response

method passing the server random number B as an argument. This challenge is sent to the server via the
SRPServerInterface.verify method and server's response is saved as M2. This step corresponds to an ex-
change of challenges. At this point the server has verified that the user is who they say they are.

5. The client side SRPLoginModule saves the login username and M1 challenge into the LoginModule shared-
State map. This is used as the Principal name and credentials by the standard JBoss ClientLoginModule.
The M1 challenge is used in place of the password as proof of identity on any method invocations on J2EE
components. The M1 challenge is a cryptographically strong hash associated with the SRP session. Its in-
terception via a third partly cannot be used to obtain the user's password.

6. At the end of this authentication protocol, the SRPServerSession has been placed into the SRPService au-
thentication cache for subsequent use by the SRPCacheLoginModule.

Although SRP has many interesting properties, it is still an evolving component in the JBossSX framework and
has some limitations of which you should be aware. Issues of note include the following:

• Because of how JBoss detaches the method transport protocol from the component container where authen-
tication is performed, an unauthorized user could snoop the SRP M1 challenge and effectively use the chal-
lenge to make requests as the associated username. Custom interceptors that encrypt the challenge using the
SRP session key can be used to prevent this issue.

• The SRPService maintains a cache of SRP sessions that time out after a configurable period. Once they
time out, any subsequent J2EE component access will fail because there is currently no mechanism for
transparently renegotiating the SRP authentication credentials. You must either set the authentication cache
timeout very long (up to 2,147,483,647 seconds, or approximately 68 years), or handle re-authentication in
your code on failure.

• By default there can only be one SRP session for a given username. Because the negotiated SRP session
produces a private session key that can be used for encryption/decryption between the client and server, the
session is effectively a stateful one. JBoss supports for multiple SRP sessions per user, but you cannot en-
crypt data with one session key and then decrypt it with another.

To use end-to-end SRP authentication for J2EE component calls, you need to configure the security domain un-
der which the components are secured to use the org.jboss.security.srp.jaas.SRPCacheLoginModule. The
SRPCacheLoginModule has a single configuration option named cacheJndiName that sets the JNDI location of
the SRP authentication CachePolicy instance. This must correspond to the AuthenticationCacheJndiName at-
tribute value of the SRPService MBean. The SRPCacheLoginModule authenticates user credentials by obtaining
the client challenge from the SRPServerSession object in the authentication cache and comparing this to the
challenge passed as the user credentials. Figure 8.11 illustrates the operation of the SRPCacheLoginMod-
ule.login method implementation.

Security on JBoss

322

Figure 8.11. A sequence diagram illustrating the interaction of the SRPCacheLoginModule with the SRP
session cache.

8.5.2.1. An SRP example

We have covered quite a bit of material on SRP and now its time to demonstrate SRP in practice with an ex-
ample. The example demonstrates client side authentication of the user via SRP as well as subsequent secured
access to a simple EJB using the SRP session challenge as the user credential. The test code deploys an EJB
JAR that includes a sar for the configuration of the server side login module configuration and SRP services.
As in the previous examples we will dynamically install the server side login module configuration using the
SecurityConfig MBean. In this example we also use a custom implementation of the SRPVerifierStore inter-
face that uses an in memory store that is seeded from a Java properties file rather than a serialized object store
as used by the SRPVerifierStoreService. This custom service is
org.jboss.chap8.ex3.service.PropertiesVerifierStore. The following shows the contents of the JAR that
contains the example EJB and SRP services.

[orb@toki examples]$ java -cp output/classes ListJar output/chap8/chap8-ex3.jar
output/chap8/chap8-ex3.jar
+- META-INF/MANIFEST.MF
+- META-INF/ejb-jar.xml
+- META-INF/jboss.xml
+- org/jboss/chap8/ex3/Echo.class
+- org/jboss/chap8/ex3/EchoBean.class
+- org/jboss/chap8/ex3/EchoHome.class
+- roles.properties
+- users.properties
+- chap8-ex3.sar (archive)
| +- META-INF/MANIFEST.MF
| +- META-INF/jboss-service.xml
| +- META-INF/login-config.xml
| +- org/jboss/chap8/ex3/service/PropertiesVerifierStore$1.class
| +- org/jboss/chap8/ex3/service/PropertiesVerifierStore.class
| +- org/jboss/chap8/ex3/service/PropertiesVerifierStoreMBean.class

Security on JBoss

323

| +- org/jboss/chap8/service/SecurityConfig.class
| +- org/jboss/chap8/service/SecurityConfigMBean.class

The key SRP related items in this example are the SRP MBean services configuration, and the SRP login mod-
ule configurations. The jboss-service.xml descriptor of the chap8-ex3.sar is given in Example 8.18, while
Example 8.19 and Example 8.20 give the example client side and server side login module configurations.

Example 8.18. The chap8-ex3.sar jboss-service.xml descriptor for the SRP services

<server>
<!-- The custom JAAS login configuration that installs

a Configuration capable of dynamically updating the
config settings -->

<mbean code="org.jboss.chap8.service.SecurityConfig"
name="jboss.docs.chap8:service=LoginConfig-EX3">

<attribute name="AuthConfig">META-INF/login-config.xml</attribute>
<attribute name="SecurityConfigName">jboss.security:name=SecurityConfig</attribute>

</mbean>

<!-- The SRP service that provides the SRP RMI server and server side
authentication cache -->

<mbean code="org.jboss.security.srp.SRPService"
name="jboss.docs.chap8:service=SRPService">

<attribute name="VerifierSourceJndiName">srp-test/chap8-ex3</attribute>
<attribute name="JndiName">srp-test/SRPServerInterface</attribute>
<attribute name="AuthenticationCacheJndiName">srp-test/AuthenticationCache</attribute>
<attribute name="ServerPort">0</attribute>
<depends>jboss.docs.chap8:service=PropertiesVerifierStore</depends>

</mbean>

<!-- The SRP store handler service that provides the user password verifier
information -->

<mbean code="org.jboss.chap8.ex3.service.PropertiesVerifierStore"
name="jboss.docs.chap8:service=PropertiesVerifierStore">

<attribute name="JndiName">srp-test/chap8-ex3</attribute>
</mbean>

</server>

Example 8.19. The client side standard JAAS configuration

srp {
org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="srp-test/SRPServerInterface"
;

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

Example 8.20. The server side XMLLoginConfig configuration

<application-policy name="chap8-ex3">
<authentication>

<login-module code="org.jboss.security.srp.jaas.SRPCacheLoginModule"
flag = "required">

<module-option name="cacheJndiName">srp-test/AuthenticationCache</module-option>

Security on JBoss

324

</login-module>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag = "required">
<module-option name="password-stacking">useFirstPass</module-option>

</login-module>
</authentication>

</application-policy>

The example services are the ServiceConfig and the PropertiesVerifierStore and SRPService MBeans.
Note that the JndiName attribute of the PropertiesVerifierStore is equal to the VerifierSourceJndiName at-
tribute of the SRPService, and that the SRPService depends on the PropertiesVerifierStore. This is required
because the SRPService needs an implementation of the SRPVerifierStore interface for accessing user pass-
word verification information.

The client side login module configuration makes use of the SRPLoginModule with a srpServerJndiName op-
tion value that corresponds to the JBoss server component SRPService JndiName attribute value(srp-
test/SRPServerInterface). Also needed is the ClientLoginModule configured with the password-stack-

ing="useFirstPass" value to propagate the user authentication credentials generated by the SRPLoginModule

to the EJB invocation layer.

There are two issues to note about the server side login module configuration. First, note the cacheJndiN-

ame=srp-test/AuthenticationCache configuration option tells the SRPCacheLoginModule the location of the
CachePolicy that contains the SRPServerSession for users who have authenticated against the SRPService.
This value corresponds to the SRPService AuthenticationCacheJndiName attribute value. Second, the config-
uration includes a UsersRolesLoginModule with the password-stacking=useFirstPass configuration option.
It is required to use a second login module with the SRPCacheLoginModule because SRP is only an authentica-
tion technology. A second login module needs to be configured that accepts the authentication credentials val-
idated by the SRPCacheLoginModule to set the principal's roles that determines the principal's permissions. The
UsersRolesLoginModule is augmenting the SRP authentication with properties file based authorization. The
user's roles are coming the roles.properties file included in the EJB JAR.

Now, run the example 3 client by executing the following command from the book examples directory:

[starksm@banshee examples]$ ant -Dchap=chap8 -Dex=3 run-example
Buildfile: build.xml
...
run-example3:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for 5 seconds for deploy...
[java] Logging in using the 'srp' configuration
[java] Created Echo
[java] Echo.echo()#1 = This is call 1
[java] Echo.echo()#2 = This is call 2

In the examples/logs directory you will find a file called ex3-trace.log. This is a detailed trace of the client
side of the SRP algorithm. The traces show step-by-step the construction of the public keys, challenges, session
key and verification.

Note that the client has taken a long time to run relative to the other simple examples. The reason for this is the
construction of the client's public key. This involves the creation of a cryptographically strong random number,
and this process takes quite a bit of time the first time it occurs. If you were to log out and log in again within
the same VM, the process would be much faster. Also note that Echo.echo()#2 fails with an authentication ex-
ception. The client code sleeps for 15 seconds after making the first call to demonstrate the behavior of the
SRPService cache expiration. The SRPService cache policy timeout has been set to a mere 10 seconds to force
this issue. As stated earlier, you need to make the cache timeout very long, or handle re-authentication on fail-
ure.

Security on JBoss

325

8.6. Running JBoss with a Java 2 security manager

By default the JBoss server does not start with a Java 2 security manager. If you want to restrict privileges of
code using Java 2 permissions you need to configure the JBoss server to run under a security manager. This is
done by configuring the Java VM options in the run.bat or run.sh scripts in the JBoss server distribution bin
directory. The two required VM options are as follows:

• java.security.manager: This is used without any value to specify that the default security manager should
be used. This is the preferred security manager. You can also pass a value to the java.security.manager

option to specify a custom security manager implementation. The value must be the fully qualified class
name of a subclass of java.lang.SecurityManager. This form specifies that the policy file should augment
the default security policy as configured by the VM installation.

• java.security.policy: This is used to specify the policy file that will augment the default security policy in-
formation for the VM. This option takes two forms: java.security.policy=policyFileURL and
java.security.policy==policyFileURL. The first form specifies that the policy file should augment the
default security policy as configured by the VM installation. The second form specifies that only the indic-
ated policy file should be used. The policyFileURL value can be any URL for which a protocol handler ex-
ists, or a file path specification.

Example 8.21 illustrates a fragment of the standard run.bat start script for Win32 that shows the addition of
these two options to the command line used to start JBoss.

Example 8.21. The modifications to the Win32 run.bat start script to run JBoss with a Java 2 security
manager.

...

set CONFIG=%1
@if "%CONFIG%" == "" set CONFIG=default
set PF=../conf/%CONFIG%/server.policy
set OPTS=-Djava.security.manager
set OPTS=%OPTS% -Djava.security.policy=%PF%
echo JBOSS_CLASSPATH=%JBOSS_CLASSPATH%
java %JAXP% %OPTS% -classpath "%JBOSS_CLASSPATH%" org.jboss.Main %*

Example 8.22 shows a fragment of the standard run.sh start script for UNIX/Linux systems that shows the addi-
tion of these two options to the command line used to start JBoss.

Example 8.22. The modifications to the UNIX/Linux run.sh start script to run JBoss with a Java 2
security manager.

...

CONFIG=$1
if ["$CONFIG" == ""]; then CONFIG=default; fi
PF=../conf/$CONFIG/server.policy
OPTS=-Djava.security.manager
OPTS="$OPTS -Djava.security.policy=$PF"
echo JBOSS_CLASSPATH=$JBOSS_CLASSPATH
java $HOTSPOT $JAXP $OPTS -classpath $JBOSS_CLASSPATH org.jboss.Main $@

Security on JBoss

326

Both start scripts are setting the security policy file to the server.policy file located in the JBoss configuration
file set directory that corresponds to the configuration name passed as the first argument to the script. This al-
lows one maintain a security policy per configuration file set without having to modify the start script.

Enabling Java 2 security is the easy part. The difficult part of Java 2 security is establishing the allowed permis-
sions. If you look at the server.policy file that is contained in the default configuration file set, you'll see that it
contains the following permission grant statement:

grant {
// Allow everything for now
permission java.security.AllPermission;

};

This effectively disables security permission checking for all code as it says any code can do anything, which is
not a reasonable default. What is a reasonable set of permissions is entirely up to you.

The current set of JBoss specific java.lang.RuntimePermissions that are required include:

TargetName What the permission allows Risks

org.jboss.security.SecurityAssociat
ion.getPrincipalInfo

Access to the
org.jboss.security.SecurityAssociat
ion getPrincipal() and getCreden-
tials() methods.

The ability to see the current thread
caller and credentials.

org.jboss.security.SecurityAssociat
ion.setPrincipalInfo

Access to the
org.jboss.security.SecurityAssociat
ion setPrincipal() and setCreden-
tials() methods.

The ability to set the current thread
caller and credentials.

org.jboss.security.SecurityAssociat
ion.setServer

Access to the
org.jboss.security.SecurityAssociat
ion setServer method.

The ability to enable or disable
multithread storage of the caller
principal and credential.

org.jboss.security.SecurityAssociat
ion.setRunAsRole

Access to the
org.jboss.security.SecurityAssociat
ion pushRunAsRole and popRun-
AsRole methods.

The ability to change the current
caller run-as role principal.

To conclude this discussion, here is a little-known tidbit on debugging security policy settings. There are vari-
ous debugging flag that you can set to determine how the security manager is using your security policy file as
well as what policy files are contributing permissions. Running the VM as follows shows the possible debug-
ging flag settings:

[nr@toki bin]$ java -Djava.security.debug=help

all turn on all debugging
access print all checkPermission results
combiner SubjectDomainCombiner debugging
jar jar verification
logincontext login context results
policy loading and granting
provider security provider debugging
scl permissions SecureClassLoader assigns

The following can be used with access:

stack include stack trace

Security on JBoss

327

domain dumps all domains in context
failure before throwing exception, dump stack

and domain that didn't have permission

Note: Separate multiple options with a comma

Running with -Djava.security.debug=all provides the most output, but the output volume is torrential. This
might be a good place to start if you don't understand a given security failure at all. A less verbose setting that
helps debug permission failures is to use -Djava.security.debug=access,failure. This is still relatively
verbose, but not nearly as bad as the all mode as the security domain information is only displayed on access
failures.

8.7. Using SSL with JBoss using JSSE

JBoss uses JSSE the Java Secure Socket Extension (JSSE). JSSE is bundled with JBoss and it comes with JDK
1.4. For more information on JSSE see: http://java.sun.com/products/jsse/index.html. A simple test that you can
use the JSSE as bundled with JBoss works is to run a program like the following:

import java.net.*;
import javax.net.ServerSocketFactory;
import javax.net.ssl.*;

public class JSSE_install_check
{

public static void main(String[] args) throws Exception
{

Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());
ServerSocketFactory factory =
SSLServerSocketFactory.getDefault();
SSLServerSocket sslSocket = (SSLServerSocket)
factory.createServerSocket(12345);

String [] cipherSuites = sslSocket.getEnabledCipherSuites();
for(int i = 0; i < cipherSuites.length; i++) {

System.out.println("Cipher Suite " + i + " = " + cipherSuites[i]);
}

}
}

The book examples includes a testcase for this which can be run using the following command. This will pro-
duce a lot of output as the -Djavax.net.debug=all option is passed to the VM.

[nr@toki examples]$ ant -Dchap=chap8 -Dex=4a run-example
...
run-example4a:
run-example4a:

[echo] Testing JSSE availablility
[java] keyStore is :
[java] keyStore type is : jks
[java] init keystore
[java] init keymanager of type SunX509
[java] trustStore is: /System/Library/Frameworks/JavaVM.framework/Versions/1.4.2/Home

/lib/security/cacerts
[java] trustStore type is : jks
[java] init truststore

...
[java] init context
[java] trigger seeding of SecureRandom
[java] done seeding SecureRandom
[java] Cipher Suite 0 = SSL_RSA_WITH_RC4_128_MD5
[java] Cipher Suite 1 = SSL_RSA_WITH_RC4_128_SHA
[java] Cipher Suite 2 = TLS_RSA_WITH_AES_128_CBC_SHA
[java] Cipher Suite 3 = TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Security on JBoss

328

http://java.sun.com/products/jsse/index.html

[java] Cipher Suite 4 = TLS_DHE_DSS_WITH_AES_128_CBC_SHA
[java] Cipher Suite 5 = SSL_RSA_WITH_3DES_EDE_CBC_SHA
[java] Cipher Suite 6 = SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA
[java] Cipher Suite 7 = SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
[java] Cipher Suite 8 = SSL_RSA_WITH_DES_CBC_SHA
[java] Cipher Suite 9 = SSL_DHE_RSA_WITH_DES_CBC_SHA
[java] Cipher Suite 10 = SSL_DHE_DSS_WITH_DES_CBC_SHA
[java] Cipher Suite 11 = SSL_RSA_EXPORT_WITH_RC4_40_MD5
[java] Cipher Suite 12 = SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
[java] Cipher Suite 13 = SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA
[java] Cipher Suite 14 = SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

The JSSE jars include the jcert.jar, jnet.jar and jsse.jar in the JBOSS_DIST/client directory.

Once you have tested that JSSE runs, you need a public key/private key pair in the form of an X509 certificate
for use by the SSL server sockets. For the purpose of this example we have created a self-signed certificate us-
ing the JDK keytool and included the resulting keystore file in the chap8 source directory as chap8.keystore.
It was created using the following command and input:

[nr@toki examples]$ keytool -genkey -alias rmi+ssl -keyalg RSA -keystore chap8.keystore -v
alidity 3650
[orb@toki examples]$ keytool -genkey -alias rmi+ssl -keyalg RSA -keystore chap8.keystore -
validity 3650
Enter keystore password: rmi+ssl
What is your first and last name?
[Unknown]: Chapter 8 SSL Example
What is the name of your organizational unit?
[Unknown]: JBoss Book
What is the name of your organization?
[Unknown]: JBoss, Inc.
What is the name of your City or Locality?
[Unknown]: Issaquah
What is the name of your State or Province?
[Unknown]: WA
What is the two-letter country code for this unit?
[Unknown]: US
Is CN=Chapter 8 SSL Example, OU=JBoss Book, O="JBoss, Inc.", L=Issaquah, ST=WA, C=US corre
ct?
[no]: yes

Enter key password for <rmi+ssl>
(RETURN if same as keystore password):

This produces a keystore file called chap8.keystore. A keystore is a database of security keys. There are two
different types of entries in a keystore:

• key entries: each entry holds very sensitive cryptographic key information, which is stored in a protected
format to prevent unauthorized access. Typically, a key stored in this type of entry is a secret key, or a
private key accompanied by the certificate chain for the corresponding public key. The keytool and
jarsigner tools only handle the later type of entry, that is private keys and their associated certificate
chains.

• trusted certificate entries: each entry contains a single public key certificate belonging to another party. It
is called a trusted certificate because the keystore owner trusts that the public key in the certificate indeed
belongs to the identity identified by the subject (owner) of the certificate. The issuer of the certificate
vouches for this, by signing the certificate.

Listing the src/main/org/jboss/chap8/chap8.keystore examples file contents using the keytool shows one
self-signed certificate:

[nr@toki examples]$ keytool -list -v -keystore src/main/org/jboss/chap8/chap8.keystore

Security on JBoss

329

Enter keystore password: rmi+ssl

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: rmi+ssl
Creation date: Nov 8, 2001
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Chapter8 SSL Example, OU=JBoss Book, O="JBoss Group, LLC", L=Issaquah, ST=WA, C=
US
Issuer: CN=Chapter8 SSL Example, OU=JBoss Book, O="JBoss Group, LLC", L=Issaquah, ST=WA, C
=US
Serial number: 3beb5271
Valid from: Thu Nov 08 21:50:09 CST 2001 until: Sun Nov 06 21:50:09 CST 2011
Certificate fingerprints:
MD5: F6:1B:2B:E9:A5:23:E7:22:B2:18:6F:3F:9F:E7:38:AE
SHA1: F2:20:50:36:97:86:52:89:71:48:A2:C3:06:C8:F9:2D:F7:79:00:36

With JSSE working and a keystore with the certificate you will use for the JBoss server, your are ready to con-
figure JBoss to use SSL for EJB access. This is done by configuring the EJB invoker RMI socket factories. The
JBossSX framework includes implementations of the java.rmi.server.RMIServerSocketFactory and
java.rmi.server.RMIClientSocketFactory interfaces that enable the use of RMI over SSL encrypted sock-
ets. The implementation classes are org.jboss.security.ssl.RMISSLServerSocketFactory and
org.jboss.security.ssl.RMISSLClientSocketFactory respectively. There are two steps to enable the use of
SSL for RMI access to EJBs. The first is to enable the use of a keystore as the database for the SSL server certi-
ficate, which is done by configuring an org.jboss.security.plugins.JaasSecurityDomain MBean. The
jboss-service.xml descriptor in the chap8/ex4 directory includes the JaasSecurityDomain definition shown
in Example 8.23.

Example 8.23. A sample JaasSecurityDomain config for RMI/SSL

<!-- The SSL domain setup -->
<mbean code="org.jboss.security.plugins.JaasSecurityDomain"

name="jboss.security:service=JaasSecurityDomain,domain=RMI+SSL">
<constructor>

<arg type="java.lang.String" value="RMI+SSL"/>
</constructor>
<attribute name="KeyStoreURL">chap8.keystore</attribute>
<attribute name="KeyStorePass">rmi+ssl</attribute>

</mbean>

The JaasSecurityDomain is a subclass of the standard JaasSecurityManager class that adds the notions of a
keystore as well JSSE KeyManagerFactory and TrustManagerFactory access. It extends the basic security
manager to allow support for SSL and other cryptographic operations that require security keys. This configura-
tion simply loads the chap8.keystore from the example 4 MBean sar using the indicated password.

The second step is to define an EJB invoker configuration that uses the JBossSX RMI socket factories that sup-
port SSL. To do this you need to define a custom configuration for the JRMPInvoker we saw in Chapter 5 as
well as an EJB setup that makes use of this invoker. The configuration required to enable RMI over SSL access
to stateless session bean is provided for you in Example 8.24 and Example 8.25 The top of the listing shows the
jboss-service.xml descriptor that defines the custom JRMPInovker, and the bottom shows the example 4

Security on JBoss

330

EchoBean4 configuration needed to use the SSL invoker. You will use this configuration in a stateless session
bean example.

Example 8.24. The jboss-service.xml configurations to enable SSL with the example 4 stateless session
bean.

<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker
name="jboss:service=invoker,type=jrmp,socketType=SSL">

<attribute name="RMIObjectPort">14445</attribute>
<attribute name="RMIClientSocketFactory">

org.jboss.security.ssl.RMISSLClientSocketFactory
</attribute>
<attribute name="RMIServerSocketFactory">

org.jboss.security.ssl.RMISSLServerSocketFactory
</attribute>
<attribute name="SecurityDomain">java:/jaas/RMI+SSL</attribute>
<depends>jboss.security:service=JaasSecurityDomain,domain=RMI+SSL</depends>

</mbean>

Example 8.25. The jboss.xml configuration to enable SSL with the example 4 stateless session bean.

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<session>

<ejb-name>EchoBean4</ejb-name>
<configuration-name>Standard Stateless SessionBean</configuration-name>
<home-invoker>jboss:service=invoker,type=jrmp,socketType=SSL</home-invoker>
<bean-invoker>jboss:service=invoker,type=jrmp,socketType=SSL</bean-invoker>

</session>
</enterprise-beans>

</jboss>

The example 4 code is located under the src/main/org/jboss/chap8/ex4 directory of the book examples. This
is another simple stateless session bean with an echo method that returns its input argument. It is hard to tell
when SSL is in use unless it fails, so we'll run the example 4 client in two different ways to demonstrate that the
EJB deployment is in fact using SSL. Start the JBoss server using the default configuration and then run ex-
ample 4b as follows:

[nr@toki examples]$ ant -Dchap=chap8 -Dex=4b run-example
...
run-example4b:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for 15 seconds for deploy...
[java] Exception in thread "main" java.rmi.ConnectIOException: error during JRMP conn

ection establishment; nested exception is:
[java] javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorExcep

tion: No trusted certificate found
[java] at sun.rmi.transport.tcp.TCPChannel.createConnection(TCPChannel.java:274)

...
[java] Caused by: javax.net.ssl.SSLHandshakeException: sun.security.validator.Validat

orException: No trusted certificate found
[java] at com.sun.net.ssl.internal.ssl.BaseSSLSocketImpl.a(DashoA12275)

...
[java] Caused by: javax.net.ssl.SSLHandshakeException: sun.security.validator.Validat

orException: No trusted certificate found
[java] at com.sun.net.ssl.internal.ssl.BaseSSLSocketImpl.a(DashoA12275)

...

The resulting exception is expected, and is the purpose of the 4b version of the example. Note that the excep-

Security on JBoss

331

tion stack trace has been edited to fit into the book format, so expect some difference. The key item to notice
about the exception is it clearly shows you are using the Sun JSSE classes to communicate with the JBoss EJB
container. The exception is saying that the self-signed certificate you are using as the JBoss server certificate
cannot be validated as signed by any of the default certificate authorities. This is expected because the default
certificate authority keystore that ships with the JSSE package only includes well known certificate authorities
such as VeriSign, Thawte, and RSA Data Security. To get the EJB client to accept your self-signed certificate
as valid, you need to tell the JSSE classes to use your chap8.keystore as its truststore. A truststore is just a
keystore that contains public key certificates used to sign other certificates. To do this, run example 4 using -

Dex=4 rather than -Dex=4b to pass the location of the correct truststore using the javax.net.ssl.trustStore

system property:

[nr@toki examples]$ ant -Dchap=chap8 -Dex=4 run-example
...
run-example4:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for 5 seconds for deploy...
[java] 0 [HandshakeCompletedNotify-Thread] DEBUG org.jboss.security.ssl.RMISSLClientS

ocketFactory - SSL handshakeCompleted, cipher=SSL_RSA_WITH_RC4_128_MD5, peerHost=127.0.0.
1

[java] Created Echo
[java] Echo.echo()#1 = This is call 1

This time the only indication that an SSL socket is involved is because of the SSL handshakeCompleted mes-
sage. This is coming from the RMISSLClientSocketFactory class as a debug level log message. If you did not
have the client configured to print out log4j debug level messages, there would be no direct indication that SSL
was involved. If you note the run times and the load on your system CPU, there definitely is a difference. SSL,
like SRP, involves the use of cryptographically strong random numbers that take time to seed the first time they
are used. This shows up as high CPU utilization and start up times.

One consequence of this is that if you are running on a system that is slower than the one used to run the ex-
amples for the book, such as when running example 4b, you may seen an exception similar to the following:

javax.naming.NameNotFoundException: EchoBean4 not bound
at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer
at sun.rmi.transport.StreamRemoteCall.executeCall
at sun.rmi.server.UnicastRef.invoke
at org.jnp.server.NamingServer_Stub.lookup
at org.jnp.interfaces.NamingContext.lookup
at org.jnp.interfaces.NamingContext.lookup
at javax.naming.InitialContext.lookup
at org.jboss.chap8.ex4.ExClient.main(ExClient.java:29)

The problem is that the JBoss server has not finished deploying the example EJB in the time the client allowed.
This is due to the initial setup time of the secure random number generator used by the SSL server socket. If
you see this issue, simply rerun the example again or increase the deployment wait time in the chap8
build.xml Ant script.

8.8. Configuring JBoss for use Behind a Firewall

JBoss comes with many socket based services that open listening ports. In this section we list the services that
open ports that might need to be configured to work when accessing JBoss behind a firewall. The following ta-
ble shows the ports, socket type, associated service for the services in the default configuration file set. Ta-
ble 8.2 shows the same information for the additional ports that exist in the all configuration file set.

Table 8.1. The ports found in the default configuration

Security on JBoss

332

Port Type Service

1099 TCP org.jboss.naming.NamingService

1098 TCP org.jboss.naming.NamingService

1162 UDP org.jboss.jmx.adaptor.snmp.trapd.TrapdService

4444 TCP org.jboss.invocation.jrmp.server.JRMPInvoker

4445 TCP org.jboss.invocation.pooled.server.PooledInvoker

8009 TCP org.jboss.web.tomcat.tc4.EmbeddedTomcatService

8080 TCP org.jboss.web.tomcat.tc4.EmbeddedTomcatService

8083 TCP org.jboss.web.WebService

8090 TCP org.jboss.mq.il.oil.OILServerILService

8092 TCP org.jboss.mq.il.oil2.OIL2ServerILService

8093 TCP org.jboss.mq.il.uil2.UILServerILService

0a TCP org.jboss.mq.il.rmi.RMIServerILService

0b UDP org.jboss.jmx.adaptor.snmp.agent.SnmpAgentService

aThis service binds to an anonymous TCP port and does not support configuration of the port or bind interface.
bThis service binds to an anonymous UDP port and does not support configuration of the port or bind interface.

Table 8.2. Additional ports in the all configuration

Port Type Service

1100 TCP org.jboss.ha.jndi.HANamingService

0a TCP org.jboss.ha.jndi.HANamingService

1102 UDP org.jboss.ha.jndi.HANamingService

3528 TCP org.jboss.invocation.iiop.IIOPInvoker

45566b UDP org.jboss.ha.framework.server.ClusterPartition

aCurrently anonymous but can be set via the RmiPort attribute.
bPlus two additional anonymous UDP ports, one can be set using the rcv_port, and the other cannot be set.

8.9. How to Secure the JBoss Server

JBoss comes with several admin access points that need to be secured or removed to prevent unauthorized ac-
cess to admin functions in a deployment. This section describes the various admin services and how to secure
them.

8.9.1. The jmx-console.war

The jmx-console.war found in the deploy directory provides an html view into the JMX microkernel. As such,
it provides access to arbitrary admin type access like shutting down the server, stopping services, deploying
new services, etc. It should either be secured like any other web application, or removed.

Security on JBoss

333

8.9.2. The web-console.war

The web-console.war found in the deploy/management directory is another web application view into the
JMX microkernel. This uses a combination of an applet and a HTML view and provides the same level of ac-
cess to admin functionality as the jmx-console.war. As such, it should either be secured or removed. The web-

console.war contains commented out templates for basic security in its WEB-INF/web.xml as well as commen-
ted out setup for a security domain in WEB-INF/jboss-web.xml.

8.9.3. The http-invoker.sar

The http-invoker.sar found in the deploy directory is a service that provides RMI/HTTP access for EJBs and
the JNDI Naming service. This includes a servlet that processes posts of marshalled
org.jboss.invocation.Invocation objects that represent invocations that should be dispatched onto the
MBeanServer. Effectively this allows access to MBeans that support the detached invoker operation via HTTP
since one could figure out how to format an approriate HTTP post. To security this access point you would
need to secure the JMXInvokerServlet servlet found in the http-in-

voker.sar/invoker.war/WEB-INF/web.xml descriptor. There is a secure mapping defined for the /

restricted/JMXInvokerServlet path by default, one would simply have to remove the other paths and config-
ure the http-invoker security domain setup in the http-invoker.sar/invoker.war/WEB-INF/jboss-web.xml

descriptor.

8.9.4. The jmx-invoker-adaptor-server.sar

The jmx-invoker-adaptor-server.sar is a service that exposes the JMX MBeanServer interface via an RMI
compatible interface using the RMI/JRMP detached invoker service. The only way for this service to be se-
cured currently would be to switch the protocol to RMI/HTTP and secure the http-invoker.sar as described
in the previous section. In the future this service will be deployed as an XMBean with a security interceptor that
supports role based access checks. If your so inclined this is a configuration that can setup today following the
proceedure demonstrated in XMBean example: Section 2.4.3.2.3.

Security on JBoss

334

9
Integrating Servlet Containers

This chapter describes the steps for integrating a third party web container into the JBoss application server
framework. A web container is a J2EE server component that enables access to servlets and JSP pages. The
most widely used servlet container is Tomcat, and this is the default web container used by JBoss.

Integrating a servlet container into JBoss consists of mapping web-app.xml JNDI information into the JBoss
JNDI namespace using an optional jboss-web.xml descriptor as well as delegating authentication and authoriz-
ation to the JBoss security layer. The org.jboss.web.AbstractWebContainer class exists to simplify these
tasks. The focus of the first part of this chapter is how to integrate a Web container using the AbstractWebCon-

tainer class. The chapter concludes with a discussion on configuration topics like the use of secure socket lay-
er (SSL) encryption with the JBoss/Tomcat bundle, as well as how to configure Apache with the JBoss/Tomcat
bundle.

9.1. The AbstractWebContainer Class

The org.jboss.web.AbstractWebContainer class is an implementation of a template pattern for web container
integration into JBoss. Web container providers wishing to integrate their container into a JBoss server should
create a subclass of AbstractWebContainer and provide the web container specific setup and WAR deploy-
ment steps. The AbstractWebContainer provides support for parsing the standard J2EE web.xml web applica-
tion deployment descriptor JNDI and security elements as well as support for parsing the JBoss specific jboss-

web.xml descriptor. Parsing of these deployment descriptors is performed to generate an integrated JNDI envir-
onment and security context. We have already seen the most of the elements of the jboss-web.xml descriptor
in other chapters. Figure 9.1 provides an overview of the jboss-web.xml descriptor DTD for reference. The
complete DTD with comments can be found in the JBOSS_DIST/docs/dtd.

335

Figure 9.1. The complete jboss-web.xml descriptor DTD

The two elements that have not been discussed are the context-root and virtual-host. The context-root

element allows one to specify the prefix under which web application is located. This is only applicable to
stand-alone web application deployment as a WAR file. Web applications included as part of an EAR must set
the root using the context-root element of the EAR application.xml descriptor. The sample jboss-web.xml

descriptor shown in Example 9.1 illustrates mapping a war to the root context.

Example 9.1. A sample jboss-web.xml descriptor for mapping a war to the root context

<jboss-web>

Integrating Servlet Containers

336

<!-- An empty context root map the war to the root context,
e.g., http://localhost:8080/ -->

<context-root />
</jboss-web>

The virtual-host element specifies the DNS name of the virtual host to which the web application should be
deployed. The details of setting up virtual hosts for servlet contexts depends on the particular servlet container.
We will look at examples of using the virtual-host element when we look at the Tomcat servlet containers
later in this chapter.

9.1.1. The AbstractWebContainer Contract

The AbstractWebContainer is an abstract class that implements the
org.jboss.web.AbstractWebContainerMBean interface used by the JBoss J2EE deployer to delegate the task
of installing war files needing to be deployed. We'll look at some of the key methods of the AbstractWebCon-

tainer below.

public boolean accepts(DeploymentInfo sdi)
{

String warFile = sdi.url.getFile();
return warFile.endsWith("war") || warFile.endsWith("war/");

}

The accepts method is implemented by JBoss deployers to indicate which type of deployments they accepts.
The AbstractWebContainer handles the deployments of WARs as JARs or unpacked directories.

public synchronized void start(DeploymentInfo di) throws DeploymentException
{

Thread thread = Thread.currentThread();
ClassLoader appClassLoader = thread.getContextClassLoader();

try {
// Create a classloader for the war to ensure a unique ENC
URL[] empty = {};
URLClassLoader warLoader = URLClassLoader.newInstance(empty, di.ucl);
thread.setContextClassLoader(warLoader);
WebDescriptorParser webAppParser = new DescriptorParser(di);

String webContext = di.webContext;
if (webContext != null) {

if (webContext.length() > 0 && webContext.charAt(0) !=
'/') {
webContext = "/" + webContext;

}
}

// Get the war URL
URL warURL = di.localUrl != null ? di.localUrl : di.url;
if (log.isDebugEnabled()) {

log.debug("webContext: " + webContext);
log.debug("warURL: " + warURL);
log.debug("webAppParser: " + webAppParser);

}

// Parse the web.xml and jboss-web.xml descriptors
WebMetaData metaData = (WebMetaData) di.metaData;
parseMetaData(webContext, warURL, di.shortName, metaData);

WebApplication warInfo = new WebApplication(metaData);
warInfo.setDeploymentInfo(di);
performDeploy(warInfo, warURL.toString(), webAppParser);
deploymentMap.put(warURL.toString(), warInfo);

Integrating Servlet Containers

337

// Generate an event for the startup
super.start(di);

} catch(DeploymentException e) {
throw e;

} catch(Exception e) {
throw new DeploymentException("Error during deploy", e);

} finally {
thread.setContextClassLoader(appClassLoader);

}
}

This section corresponds to the start method. This method is a template pattern method implementation. The
argument to the deploy method is the WAR deployment info object. This contains the URL to the WAR, the
UnifiedClassLoader for the WAR, the parent archive such as an EAR, and the J2EE application.xml con-

text-root if the WAR is part of an EAR.

The first step of the start method is to save the current thread context class loader and then create another URL-
ClassCloader (warLoader) using the WAR UnifiedClassLoader as its parent. This warLoader is used to en-
sure a unique JNDI ENC (enterprise naming context) for the WAR will be created. Chapter 3 mentioned that
the java:comp context's uniqueness was determined by the class loader that created the java:comp context. The
warLoader ClassLoader is set as the current thread context class loader before the performDeploy call is made.
Next, the web.xml and jboss-web.xml descriptors are parsed by calling parseMetaData. Next, the web contain-
er-specific subclass is asked to perform the actual deployment of the WAR through the performDeploy call.
The WebApplication object for this deployment is stored in the deployed application map using the warUrl as
the key. The final step is to restore the thread context class loader to the one that existed at the start of the meth-
od.

protected abstract void performDeploy(WebApplication webApp, String warUrl,
WebDescriptorParser webAppParser)

throws Exception;

This is the signature for the abstract performDeploy method. This method is called by the start method and
must be overridden by subclasses to perform the web container specific deployment steps. A WebApplication

is provided as an argument, and this contains the metadata from the web.xml descriptor, and the jboss-web.xml

descriptor. The metadata contains the context-root value for the web module from the J2EE application.xml
descriptor, or if this is a stand-alone deployment, the jboss-web.xml descriptor. The metadata also contains
any jboss-web.xml descriptor virtual-host value. On return from performDeploy, the WebApplication must
be populated with the class loader of the servlet context for the deployment. The warUrl argument is the string
for the URL of the Web application WAR to deploy. The webAppParser argument is a callback handle the sub-
class must use to invoke the parseWebAppDescriptors method to set up the Web application JNDI environ-
ment. This callback provides a hook for the subclass to establish the web application JNDI environment before
any servlets are created that are to be loaded on startup of the WAR. A subclass' performDeploy method imple-
mentation needs to be arranged so that it can call the parseWebAppDescriptors before starting any servlets that
need to access JNDI for JBoss resources like EJBs, resource factories, and so on. One important setup detail
that needs to be handled by a subclass implementation is to use the current thread context class loader as the
parent class loader for any Web container-specific class loader created. Failure to do this results in problems for
web applications that attempt to access EJBs or JBoss resources through the JNDI ENC.

public synchronized void stop(DeploymentInfo di)
throws DeploymentException

{
URL warURL = di.localUrl != null ? di.localUrl : di.url;
String warUrl = warURL.toString();
try {

performUndeploy(warUrl);
// Remove the web application ENC...
deploymentMap.remove(warUrl);
// Generate an event for the stop

Integrating Servlet Containers

338

super.stop(di);
} catch(DeploymentException e) {

throw e;
} catch(Exception e) {

throw new DeploymentException("Error during deploy", e);
}

}

This is the stop method. It calls the subclass performUndeploy method to perform the container-specific un-
deployment steps. After undeploying the application, the warUrl is unregistered from the deployment map. The
warUrl argument is the string URL of the WAR as originally passed to the performDeploy method.

protected abstract void performUndeploy(String warUrl) throws Exception;

This is the signature of the abstract performUndeploy method, which is called from the stop method. A call to
performUndeploy asks the subclass to perform the Web container-specific undeployment steps.

public void setConfig(Element config)
{
}

The setConfig method is a stub method that subclasses can override if they want to support an arbitrary exten-
ded configuration beyond that which is possible through MBean attributes. The config argument is the parent
DOM element for an arbitrary hierarchy given by the child element of the Config attribute in the mbean element
specification of the jboss-service.xml descriptor of the web container service. You'll see an example use of
this method and config value when you look at the MBean that supports embedding Tomcat into JBoss.

protected void parseWebAppDescriptors(DeploymentInfo di,
ClassLoader loader,
WebMetaData metaData)

throws Exception
{

log.debug("AbstractWebContainer.parseWebAppDescriptors, Begin");
InitialContext iniCtx = new InitialContext();
Context envCtx = null;
Thread currentThread = Thread.currentThread();
ClassLoader currentLoader = currentThread.getContextClassLoader();
try {

// Create a java:comp/env environment unique for the web application
log.debug("Creating ENC using ClassLoader: "+loader);
ClassLoader parent = loader.getParent();
while (parent != null) {

log.debug(".."+parent);
parent = parent.getParent();

}
currentThread.setContextClassLoader(loader);
metaData.setENCLoader(loader);
envCtx = (Context) iniCtx.lookup("java:comp");
// Add a link to the global transaction manager
envCtx.bind("UserTransaction", new LinkRef("UserTransaction"));
log.debug("Linked java:comp/UserTransaction to JNDI name: UserTransaction");
envCtx = envCtx.createSubcontext("env");

} finally {
currentThread.setContextClassLoader(currentLoader);

}

Iterator envEntries = metaData.getEnvironmentEntries();
log.debug("addEnvEntries");
addEnvEntries(envEntries, envCtx);

Iterator resourceEnvRefs = metaData.getResourceEnvReferences();
log.debug("linkResourceEnvRefs");
linkResourceEnvRefs(resourceEnvRefs, envCtx);

Iterator resourceRefs = metaData.getResourceReferences();

Integrating Servlet Containers

339

log.debug("linkResourceRefs");
linkResourceRefs(resourceRefs, envCtx);

Iterator ejbRefs = metaData.getEjbReferences();
log.debug("linkEjbRefs");
linkEjbRefs(ejbRefs, envCtx, di);

Iterator ejbLocalRefs = metaData.getEjbLocalReferences();
log.debug("linkEjbLocalRefs");
linkEjbLocalRefs(ejbLocalRefs, envCtx, di);

String securityDomain = metaData.getSecurityDomain();
log.debug("linkSecurityDomain");
linkSecurityDomain(securityDomain, envCtx);

log.debug("AbstractWebContainer.parseWebAppDescriptors, End");
}

The parseWebAppDescriptors method is invoked from within the subclass performDeploy method when it in-
vokes the webAppParser.parseWebAppDescriptors callback to setup the web application ENC
(java:comp/env) env-entry, resource-env-ref, resource-ref, local-ejb-ref and ejb-ref values declared
in the web.xml descriptor. The creation of the env-entry values does not require a jboss-web.xml descriptor.
The creation of the resource-env-ref, resource-ref, and ejb-ref elements does require a jboss-web.xml

descriptor for the JNDI name of the deployed resources/EJBs. Because the ENC context is private to the web
application, the web application class loader is used to identify the ENC. The loader argument is the class load-
er for the web application, and may not be null. The metaData argument is the WebMetaData argument passed to
the subclass performDeploy method. The implementation of the parseWebAppDescriptors uses the metadata
information from the WAR deployment descriptors and then creates the JNDI ENC bindings.

protected void addEnvEntries(Iterator envEntries, Context envCtx)
throws ClassNotFoundException, NamingException

{
}

The addEnvEntries method creates the java:comp/env web application env-entry bindings that were spe-
cified in the web.xml descriptor.

protected void linkResourceEnvRefs(Iterator resourceEnvRefs, Context envCtx)
throws NamingException

{
}

The linkResourceEnvRefs method maps the java:comp/env/xxx web application JNDI ENC resource-

env-ref web.xml descriptor elements onto the deployed JNDI names using the mappings specified in the
jboss-web.xml descriptor.

protected void linkResourceRefs(Iterator resourceRefs, Context envCtx)
throws NamingException

{
}

The linkResourceRefs method maps the java:comp/env/xxx web application JNDI ENC resource-ref

web.xml descriptor elements onto the deployed JNDI names using the mappings specified in the jboss-

web.xml descriptor.

protected void linkEjbRefs(Iterator ejbRefs, Context envCtx, DeploymentInfo di)
throws NamingException

{
}

Integrating Servlet Containers

340

The linkEjbRefs method maps the java:comp/env/ejb web application JNDI ENC ejb-ref web.xml
descriptor elements onto the deployed JNDI names using the mappings specified in the jboss-web.xml

descriptor.

protected void linkEjbLocalRefs(Iterator ejbRefs, Context envCtx,
DeploymentInfo di)

throws NamingException
{
}

The linkEjbLocalRefs method maps the java:comp/env/ejb Web application JNDI ENC ejb-local-ref

web.xml descriptor elements onto the deployed JNDI names using the ejb-link mappings specified in the
web.xml descriptor.

protected void linkSecurityDomain(String securityDomain, Context envCtx)
throws NamingException

{
}

The linkSecurityDomain method creates a java:comp/env/security context that contains a securityMgr

binding pointing to the AuthenticationManager implementation and a realmMapping binding pointing to the
RealmMapping implementation that is associated with the security domain for the web application. Also creates
is a subject binding that provides dynamic access to the authenticated Subject associated with the request
thread. If the jboss-web.xml descriptor contained a security-domain element, the bindings are
javax.naming.LinkRefs to the JNDI name specified by the security-domain element, or subcontexts of this
name. If there was no security-domain element, the bindings are to
org.jboss.security.plugins.NullSecurityManager instance that simply allows all authentication and au-
thorization checks.

public String[] getCompileClasspath(ClassLoader loader)
{
}

The getCompileClasspath method is a utility method available for web containers to generate a classpath that
walks up the class loader chain starting at the given loader and queries each class loader for the URLs it serves
to build a complete classpath of URL strings. This is needed by some JSP compiler implementations (Jasper for
one) that expect to be given a complete classpath for compilation.

9.1.2. Creating an AbstractWebContainer Subclass

To integrate a web container into JBoss you need to create a subclass of AbstractWebContainer and implement
the required performDeploy(WebApplication, String, WebDescriptorParser) and performUn-

deploy(String) methods as described in the preceding section. The following additional integration points
should be considered as well.

9.1.2.1. Use the Thread Context Class Loader

Although this issue was noted in the performDeploy method description, we'll repeat it here since it is such a
critical detail. During the setup of a WAR container, the current thread context class loader must be used as the
parent class loader for any web container specific class loader that is created. Failure to do this will result in
problems for web applications that attempt to access EJBs or JBoss resources through the JNDI ENC.

9.1.2.2. Integrate Logging Using log4j

Integrating Servlet Containers

341

JBoss uses the Apache log4j logging API as its internal logging API. For a web container to integrate well with
JBoss it needs to provide a mapping between the web container logging abstraction to the log4j API. As a sub-
class of AbstractWebContainer, your integration class has access to the log4j interface via the super.log in-
stance variable or equivalently, the superclass getLog() method. This is an instance of the
org.jboss.logging.Logger class that wraps the log4j category. The name of the log4j category is the name of
the container subclass.

9.1.2.3. Delegate web container authentication and authorization to JBossSX

Ideally both web application and EJB authentication and authorization are handled by the same security man-
ager. To enable this for your web container you must hook into the JBoss security layer. This typically requires
a request interceptor that maps from the web container security callouts to the JBoss security API. Integration
with the JBossSX security framework is based on the establishment of a java:comp/env/security context as
described in the linkSecurityDomain method comments in the previous section. The security context provides
access to the JBossSX security manager interface implementations associated with the web application for use
by subclass request interceptors. An outline of the steps for authenticating a user using the security context is
presented in Example 9.2 in quasi pseudo-code. Example 9.3 provides the equivalent process for the authoriza-
tion of a user.

Example 9.2. A pseudo-code description of authenticating a user via the JBossSX API and the
java:comp/env/security JNDI context.

// Get the username and password from the request context...
HttpServletRequest request = ...;
String username = getUsername(request);
String password = getPassword(request);

// Get the JBoss security manager from the ENC context
InitialContext iniCtx = new InitialContext();
AuthenticationManager securityMgr = (AuthenticationManager)

iniCtx.lookup("java:comp/env/security/securityMgr");

SimplePrincipal principal = new SimplePrincipal(username);
if (securityMgr.isValid(principal, password)) {

// Indicate the user is allowed access to the web content...
// Propagate the user info to JBoss for any calls into made by the servlet
SecurityAssociation.setPrincipal(principal);
SecurityAssociation.setCredential(password.toCharArray());

} else {
// Deny access...

}

Example 9.3. A pseudo-code description of authorization a user via the JBossSX API and the
java:comp/env/security JNDI context.

// Get the username & required roles from the request context...
HttpServletRequest request = ...;
String username = getUsername(request);
String[] roles = getContentRoles(request);

// Get the JBoss security manager from the ENC context
InitialContext iniCtx = new InitialContext();
RealmMapping securityMgr = (RealmMapping)

iniCtx.lookup("java:comp/env/security/realmMapping");

SimplePrincipal principal = new SimplePrincipal(username);
Set requiredRoles = new HashSet(java.util.Arrays.asList(roles));

Integrating Servlet Containers

342

if (securityMgr.doesUserHaveRole(principal, requiredRoles)) {
// Indicate user has the required roles for the web content...

} else {
// Deny access...

}

9.2. JBoss/Tomcat-5 bundle notes

In this section we'll discuss configuration issues specific to the JBoss/Tomcat 5 integration bundle. Tomcat 5 is
the latest release of the Apache Java servlet container. It supports the Servlet 2.4 and JSP 2.0 specifications.
The JBoss/Tomcat integration layer is controlled by the JBoss MBean service configuration. The MBean used
to embed the Tomcat-4.1.x series of web containers is org.jboss.web.tomcat.tc5.Tomcat5, and it is a sub-
class of the AbstractWebContainer class. Its configurable attributes include:

• Java2ClassLoadingCompliance: enables the standard Java2 parent delegation class loading model rather
than the servlet model which loads from the WAR. This is true by default as loading from WARs that in-
clude client JARs with classes used by EJBs causes class loading conflicts. If you enable the servlet class
loading model by setting this flag to false, you will need to organize your deployment package to avoid du-
plicate classes in the deployment.

• UseJBossWebLoader: A flag indicating if the class loader used by Tomcat as the web application class
loader is a JBoss unified class loader. The default is true, which means that the classes available in the
WAR inside of the WEB-INF/classes and WEB-INF/libare incorporated into the default shared class loader
repository described in Chapter 2. This may not be what you want as its contrary to the default servlet class
loading model and can result in sharing of classes/resources between web applications. You can disable this
by setting this attribute to false.

• ManagerClass: This is the class to use as the session manager for replicating the state of web applications
marked as distributable. The only provided implementation session manager is
org.jboss.web.tomcat.tc5.session.JBossCacheManager, which uses JBossCache to track the distributed
state.

• SnapshotMode: Set the snapshot mode in a clustered environment. This must be one of instant or inter-
val. In instant mode changes to a clustered session are instantly propagated whenever a modification is
made. In interval mode all modifications are periodically propagated according to the SnapshotInterval.

• SnapshotInterval: Set the snapshot interval in ms for the interval snapshot mode. The default is 1000 ms,
which is 1 second.

9.2.1. The Tomcat server.xml file

While the jboss-service.xml file controls the JBoss/Tomcat integration, Tomcat has its own configuration
file which guides its operation. This is the server.xml descriptor that you will find in the deploy/jboss-

web-tomcat50.sar directory.

Integrating Servlet Containers

343

Figure 9.2. An overview of the Tomcat 5 configuration DTD supported by the server.xml file.

We'll now look at some of the configuration options available in the server.xml file. The top level element is
is the the Server element is the root element, which should contain a Service element representing the the en-
tire web subsystem. The only supported attribute is:

• name: a unique name by which the service is known.

9.2.1.1. Connector

A Connector element configures a transport mechanism that allows clients to send requests and receive re-
sponses from the Service it is associated with. Connectors forward requests to the engine and return the results
to the requesting client. Connectors support these attributes:

• enableLookups: a flag that enables DNS resolution of the client hostname as accessed via the ServletRe-

Integrating Servlet Containers

344

quest.getRemoteHost method. This flag defaults to false.

• redirectPort: the port to which non-SSL requests will be redirected when a request for content secured un-
der a transport confidentiality or integrity constraint is received. This defaults to the standard HTTPS port
of 443.

• secure: sets the ServletRequest.isSecure method value flag to indicate whether or not the transport chan-
nel is secure. This flag defaults to false.

• scheme: sets the protocol name as accessed by the ServletRequest.getScheme method. The scheme de-
faults to http.

• acceptCount: The maximum queue length for incoming connection requests when all possible request pro-
cessing threads are in use. Any requests received when the queue is full will be refused. The default value is
10.

• address. For servers with more than one IP address, this attribute specifies which address will be used for
listening on the specified port. By default, this port will be used on all IP addresses associated with the serv-
er.

• bufferSize: The size (in bytes) of the buffer to be provided for input streams created by this connector. By
default, buffers of 2048 bytes will be provided.

• connectionTimeout: The number of milliseconds this connector will wait, after accepting a connection, for
the request URI line to be presented. The default value is 60000 (i.e. 60 seconds).

• debug: The debugging detail level of log messages generated by this component, with higher numbers cre-
ating more detailed output. If not specified, this attribute is set to zero (0). Whether or not this shows up in
the log further depends on the log4j category org.jboss.web.tomcat.tc5.Tomcat5 threshold.

• maxThreads: The maximum number of request processing threads to be created by this connector, which
therefore determines the maximum number of simultaneous requests that can be handled. If not specified,
this attribute is set to 200.

• maxSpareThreads: The maximum number of unused request processing threads that will be allowed to ex-
ist until the thread pool starts stopping the unnecessary threads. The default value is 50.

• minSpareThreads: The number of request processing threads that will be created when this connector is
first started. The connector will also make sure it has the specified number of idle processing threads avail-
able. This attribute should be set to a value smaller than that set for maxThreads. The default value is 4.

• port: The TCP port number on which this connector will create a server socket and await incoming connec-
tions. Your operating system will allow only one server application to listen to a particular port number on a
particular IP address.

• proxyName: If this connector is being used in a proxy configuration, configure this attribute to specify the
server name to be returned for calls to request.getServerName().

• proxyPort: If this connector is being used in a proxy configuration, configure this attribute to specify the
server port to be returned for calls to request.getServerPort().

• tcpNoDelay: If set to true, the TCP_NO_DELAY option will be set on the server socket, which improves per-
formance under most circumstances. This is set to true by default.

Additional attribute descriptions may be found in the Tomcat website document: ht-

Integrating Servlet Containers

345

tp://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/http11.html

9.2.1.2. Engine

Each Service must have a single Engine configuration. An engine handles the requests submitted to a service
via the configured connectors. The child elements supported by the embedded service include Host, Logger,
DefaultContext, Valve and Listener. The supported attributes include:

• className: the fully qualified class name of the org.apache.catalina.Engine interface implementation
to use. If not specifies this defaults to org.apache.catalina.core.StandardEngine.

• defaultHost: the name of a Host configured under the Engine that will handle requests with host names that
do not match a Host configuration.

• name: a logical name to assign the Engine. It will be used in log messages produced by the Engine.

Additional information on the Engine element may be found in the Tomcat website document ht-
tp://jakarta.apache.org/tomcat/tomcat-5.1-doc/config/engine.html.

9.2.1.3. Host

A Host element represents a virtual host configuration. It is a container for web applications with a specified
DNS hostname. The child elements supported by the embedded service include Alias, Logger, DefaultCon-
text, Valve and Listener. The supported attributes include:

• className: the fully qualified class name of the org.apache.catalina.Host interface implementation to
use. If not specifies this defaults to org.apache.catalina.core.StandardHost.

• name: the DNS name of the virtual host. At least one Host element must be configured with a name that
corresponds to the defaultHost value of the containing Engine.

The Alias element is an optional child element of the Host element. Each Alias content specifies an alternate
DNS name for the enclosing Host.

Additional information on the Host element may be found in the Tomcat website document ht-
tp://jakarta.apache.org/tomcat/tomcat-4.1-doc/config/host.html.

9.2.1.4. DefaultContext

The DefaultContext element is a configuration template for web application contexts. It may be defined at the
Engine or Host level. The child elements supported by the embedded service include WrapperLifecycle, In-
stanceListener, WrapperListener, and Manager. The supported attributes include:

• className: the fully qualified class name of the org.apache.catalina.core.DefaultContext implement-
ation. This defaults to org.apache.catalina.core.DefaultContext and if overriden must be a subclass of
DefaultContext .

• cookies: a flag indicating if sessions will be tracked using cookies. The default is true.

• crossContext: A flag indicating if the ServletContext.getContext(String path) method should return
contexts for other web applications deployed in the calling web application's virtual host. The default is
false.

Integrating Servlet Containers

346

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/http11.html
http://jakarta.apache.org/tomcat/tomcat-5.1-doc/config/engine.html
http://jakarta.apache.org/tomcat/tomcat-5.1-doc/config/engine.html
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/config/host.html
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/config/host.html

9.2.1.5. Logger

The Logger element specifies a logging configuration the Tomcat instance. The supported attributes include:

• className: The fully qualified class name of the org.apache.catalina.Logger interface implementation.
For integration with JBoss logging this should be set to org.jboss.web.tomcat.Log4jLogger.

• verbosity: The default log level.

• category: The default log category.

9.2.1.6. Valve

A Valve element configures a hook into the request processing pipeline for the web container. Valves must im-
plement the org.apache.catalina.Valve interface. There is only one required configuration attribute:

• className: The fully qualified class name of the org.apache.catalina.Valve interface implementation.

The most commonly used valve is the AccessLogValve, which keeps a standard HTTP access log of incoming
requests. The className for the access log value is org.jboss.web.catalina.valves.AccessLogValue. The
addition Valve attributes supported by it include:

• ` directory: The directory path into which the access log files will be created.

• pattern: A pattern specifier that defines the format of the log messages. This defaults to common.

• prefix: The prefix to add to each log file name. This defaults to access_log.

• suffix: The suffix to add to each log file name. This default to an empty string, meaning that no suffix will
be added.

Additional information on the Valve element and the available valve implementations may be found in the
Tomcat website document http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/valve.html.

9.2.2. Using SSL with the JBoss/Tomcat bundle

There are a few ways one can configure HTTP over SSL for the embedded Tomcat servlet container.The main
difference is whether or not you use the JBoss specific connector socket factory that allows one to obtain the
JSSE server certificate information from a JBossSX SecurityDomain. This requires establishing a SecurityDo-

main using the org.jboss.security.plugins.JaasSecurityDomain MBean. These two steps are similar to the
procedure we used in Chapter 8 to enable RMI with SSL encryption. A server.xml configuration file that illus-
trates the setup of only an SSL connector via this approach is given in Example 9.4. This configuration includes
the same JaasSecurityDomain setup as Chapter 8, but since the descriptor is not being deployed as part of a
SAR that includes the chap8.keystore, you need to copy the chap8.keystore to the server/default/conf

directory.

Example 9.4. The JaasSecurityDoman and EmbeddedCatalinaSX MBean configurations for setting up
Tomcat 5 to use SSL as its primary connector protocol.

<Server>
<Service name="jboss.web" className="org.jboss.web.tomcat.tc5.StandardService">

Integrating Servlet Containers

347

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/config/valve.html

<Connector port="8080" address="${jboss.bind.address}" maxThreads="150"
minSpareThreads="25" maxSpareThreads="75" enableLookups="false"
redirectPort="443" acceptCount="100" connectionTimeout="20000"
disableUploadTimeout="true"/>

<Connector port="443" address="${jboss.bind.address}" maxThreads="100"
minSpareThreads="5" maxSpareThreads="15" scheme="https"
secure="true" clientAuth="false"
keystoreFile="${jboss.server.home.dir}/conf/chap8.keystore"
keystorePass="rmi+ssl" sslProtocol="TLS"/>

<Engine name="jboss.web" defaultHost="localhost">
<Realm

className="org.jboss.web.tomcat.security.JBossSecurityMgrRealm"
certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"/>

<Logger className="org.jboss.web.tomcat.Log4jLogger"
verbosityLevel="WARNING" category="org.jboss.web.localhost.Engine"/>

<Host name="localhost" autoDeploy="false" deployOnStartup="false"
deployXML="false">

<DefaultContext cookies="true" crossContext="true" override="true"/>
</Host>

</Engine>
</Service>

</Server>

A quick test of this config can be made by accessing the JMX console web application using this URL ht-
tps://localhost/jmx-console/index.jsp.

Note: if your running on a *nix system (Linux, Solaris, OS X) that only allows root to open ports below 1024
you will need to change the port number above to something like 8443.

Factory configuration attributes:

• algorithm: The certificate encoding algorithm to be used. If not specified, the default value is SunX509.

• className: The fully qualified class name of the SSL server socket factory implementation class. You
must specify org.apache.coyote.tomcat4.CoyoteServerSocketFactory here. Using any other socket factory
will not cause an error, but the server socket will not be using SSL.

• clientAuth: Set to true if you want the SSL stack to require a valid certificate chain from the client before
accepting a connection. A false value (which is the default) will not require a certificate chain unless the cli-
ent requests a resource protected by a security constraint that uses CLIENT-CERT authentication.

• keystoreFile: The pathname of the keystore file where you have stored the server certificate to be loaded.
By default, the pathname is the file ".keystore" in the operating system home directory of the user that is
running Tomcat.

• keystorePass: The password used to access the server certificate from the specified keystore file. The de-
fault value is "changeit".

• keystoreType: The type of keystore file to be used for the server certificate. If not specified, the default
value is "JKS".

• protocol: The version of the SSL protocol to use. If not specified, the default is "TLS".

Note that if you try to test this configuration using the self-signed certificate from the Chapter 8
chap8.keystore and attempt to access content over an HTTPS connection, your browser should display a
warning dialog indicating that it does not trust the certificate authority that signed the certificate of the server

Integrating Servlet Containers

348

https://localhost/jmx-console/index.jsp
https://localhost/jmx-console/index.jsp

you are connecting to. For example, when the first configuration example was tested, IE 5.5 showed the initial
security alert dialog listed in Figure 9.3. Figure 9.4 shows the server certificate details. This warning is impor-
ant as anyone can generate a self-signed certificate with any information they want. Your only way to verify
that the system on the other side really represents the party it claim to is by verifying that it is signed by a trus-
ted 3rd party.

Figure 9.3. The Internet Explorer 5.5 security alert dialog.

Integrating Servlet Containers

349

Figure 9.4. The Internet Explorer 5.5 SSL certificate details dialog.

9.2.3. Setting up Virtual Hosts

Virtual hosts allow you to group web applications according to the various DNS names by which the machine
running JBoss is known. As an example, consider the server.xml configuration file given in Example 9.5. This
configuration defines a default host named vhost1.mydot.com and a second host named vhost2.mydot.com,
which also has the alias www.mydot.com associated with it.

Example 9.5. An example virtual host configuration.

<Server>
<Service name="jboss.web"

className="org.jboss.web.tomcat.tc5.StandardService">

<!-- A HTTP/1.1 Connector on port 8080 -->

Integrating Servlet Containers

350

<Connector port="8080" address="${jboss.bind.address}"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" redirectPort="8443" acceptCount="100"
connectionTimeout="20000" disableUploadTimeout="true"/>

<Engine name="jboss.web" defaultHost="vhost1">
<Realm className="org.jboss.web.tomcat.security.JBossSecurityMgrRealm"

certificatePrincipal="org.jboss.security.auth.certs.SubjectDNMapping"
/>

<Logger className="org.jboss.web.tomcat.Log4jLogger"
verbosityLevel="WARNING"
category="org.jboss.web.localhost.Engine"/>

<Host name="vhost1" autoDeploy="false"
deployOnStartup="false" deployXML="false">

<Alias>vhost1.mydot.com</Alias>
<Valve className="org.apache.catalina.valves.AccessLogValve"

prefix="vhost1" suffix=".log" pattern="common"
directory="${jboss.server.home.dir}/log"/>

<DefaultContext cookies="true" crossContext="true" override="true"/>
</Host>
<Host name="vhost2" autoDeploy="false"

deployOnStartup="false" deployXML="false">
<Alias>vhost2.mydot.com</Alias>
<Alias>www.mydot.com</Alias>

<Valve className="org.apache.catalina.valves.AccessLogValve"
prefix="vhost2" suffix=".log" pattern="common"
directory="${jboss.server.home.dir}/log"/>

<DefaultContext cookies="true" crossContext="true" override="true"/>
</Host>

</Engine>
</Service>

</Server>

When a WAR file is deployed, it will be by default associated with the virtual host whose name matches the
defaultHost attribute of the containing Engine. To deploy a WAR to a specific virtual host you need to specify
an appropriate virtual-host definition in your e jboss-web.xml descriptor. The following jboss-web.xml

descriptor demonstrates how to deploy a WAR to the virtual host www.mydot.com. Note that we can use either
the virtual host name in the config file and the actual host name.

<jboss-web>
<context-root>/</context-root>
<virtual-host>www.mydot.com</virtual-host>

</jboss-web>

9.2.4. Serving Static Content

JBoss provides a default application that serves content for the root application context. This default context is
the ROOT.war application in the jbossweb-tomcat50.sar directory. You can serve static files not associated
with any other application by adding that content to the ROOT.war directory. For example, if you want to have a
shared image directory you could create an image subdirectory inside of ROOT.war and place the images there.
You could then access an image named myimage.jpg at http://localhost:8080/images/myimage.jpg.

9.2.5. Using Apache with the Tomcat

In some architectures, it is useful to put an Apache web server in front of the JBoss server. External web clients

Integrating Servlet Containers

351

http://localhost:8080/images/myimage.jpg

talk to an Apache instance, which in turn speaks to the Tomcat instance on behalf of the clients. Apache needs
to be configured to use the mod_jk module which speaks the AJP protocol to an AJP connector running in
Tomcat. The provided server.xml file comes with this AJP connector enabled.

<Connector port="8009" address="${jboss.bind.address}"
enableLookups="false" redirectPort="8443" debug="0"
protocol="AJP/1.3" />

You'll need to consult the Apache and mod_jk documentation for complete installation instructions. Assuming
you have a properly configured Apache instance, the following configuration fragment shows an example of
how to connect with a WAR deployed with a context root of /jbosstest.

...
LoadModule jk_module libexec/mod_jk.so
AddModule mod_jk.c

<IfModule mod_jk.c>
JkWorkersFile /tmp/workers.properties
JkLogFile /tmp/mod_jk.log
JkLogLevel debug
JkMount /jbosstest/* ajp13

</IfModule>

The workers.properties file contains the details of how to contact the JBoss instance.

9.2.6. Using Clustering

JBoss supports clustering in the embedded Tomcat service. The steps to setup clustering of Tomcat embedded
containers is:

• If you are using a load balancer, make sure that your setup uses sticky sessions. This means that if a user
that starts a session on node A, all subsequent requests are forwarded to node A as long node A is up and
running. For configuration of the Apache webserver sticky sessions see http://www.ubeans.com/tomcat/ for
details.

• If you aren't using the all configuration, make sure that cluster-service.xml is in your deploy directory.
If it isn't, copy cluster-service.xml from server/all/deploy into your deploy directory. You also need
the jgroups.jar in your lib directory. This can be found in the server/all/lib directory.

• Start JBoss to check if your setup works. Look at the JMX management console (ht-
tp://localhost:8080/jmx-console/). Find the jboss.cache:service=TomcatClusteringCache MBean. The
StateString must be Started. If it is Stopped look in the server's log file.

• To enable clustering of your web applications you must mark them as distributable in the web.xml

descriptor. For example:

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd ">

<web-app>
<distributable/>
<!-- ... -->

</web-app>

• Deploy your WAR as usual and it should now be clustered.

Integrating Servlet Containers

352

http://www.ubeans.com/tomcat/
http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

If you have deployed and accessed your application, go back to the
jboss.cache:service=TomcatClusteringCache MBean and invoke the printDetails operation. You should
see output resembling the following.

/JSESSION

/n6HywRwITbY-xvzaZ0LS5Q**
n6HywRwITbY-xvzaZ0LS5Q**: org.jboss.invocation.MarshalledValue@9c1dddab

/R1T4Dapn7c8T-+Ynd9v9MA**
R1T4Dapn7c8T-+Ynd9v9MA**: org.jboss.invocation.MarshalledValue@8c0f60b6

This output shows two separate web sessions that are being shared via JBossCache. If you don't see any output,
either the application was not correctly marked as distributable or you haven't accessed the a part of applica-
tion that places values in the HTTP session.

Integrating Servlet Containers

353

10
MBean Services Miscellany

This chapter discusses useful MBean services that are not discussed elsewhere either because they are utility
services not necessary for running JBoss, or they don't fit into a current section of the book.

10.1. System Properties Management

The management of system properties can be done using the
org.jboss.varia.property.SystemPropertiesService MBean. It supports setting of the VM global property
values just as java.lang.System.setProperty method and the VM command line arguments do.

Its configurable attributes include:

• Properties: a specification of multiple property name=value pairs using the
java.util.Properites.load(java.io.InputStream) method format. Each property=value statement is
given on a separate line within the body of the Properties attribute element.

• URLList: a comma seperated list of URL strings from which to load properties file formatted content. If a
component in the list is a relative path rather than a URL it will be treated as a file path relative to the
<jboss-dist>/server/<config> directory. For example, a component of conf/local.properties would
be treated as a file URL that points to the <jboss-dist>/server/default/conf/local.properties file
when running with the default configuration file set.

Both attributes are illustrated in Example 10.1.

Example 10.1. An example SystemPropertiesService jboss-service descriptor

<server>
<mbean code="org.jboss.varia.property.SystemPropertiesService"

name="jboss.util:type=Service,name=SystemProperties">

<!-- Load properties from each of the given comma seperated URLs -->
<attribute name="URLList">

http://somehost/some-location.properties,
./conf/somelocal.properties

</attribute>

<!-- Set propertuies using the properties file style. -->
<attribute name="Properties">

property1=This is the value of my property
property2=This is the value of my other property

</attribute>

</mbean>
</server>

354

10.2. Property Editor Management

Support for managing java.bean.PropertyEditor instances is available through the
org.jboss.varia.property.PropertyEditorManagerService MBean. This is a simple service that help
define property editors using the java.bean.PropertyEditorManager class. This service is used in the main
jboss-service.xml file to preload the custom JBoss PropertyEditor implementations. This is necessary for
some JDK1.3.0 VMs that will only load property editors from the system classpath.

Its supported attributes include:

• BootstrapEditors: This is a listing of property_editor_class=editor_value_type_class pairs defining
the property editor to type mappings that should be preloaded into the property PropertyEditorManager

class using its registerEditor(Class targetType, Class editorClass) method. The value type of this
attribute is a string so that it may be set from a string without requiring a custom property editor.

• Editors: This serves the same function as the BootstrapEditors attribute, but its type is a
java.util.Properties class, and so setting this from a string value requires a custom property editor for
Properties. In situations where custom propery editors can be loaded from the thread context class loader,
this may be used instead of the BootstrapEditors attribute.

• EditorSearchPath: This attribute allows one to set the PropertyEditorManager editor packages search
path.

10.3. Services Binding Management

With all of the independently deployed services available in JBoss, running multiple instances on a given ma-
chine can be a tedious exercise in configuration file editing. The binding service,
org.jboss.services.binding.ServiceBindingManager, allows one to map service attribute values from a
central location. After a service's descriptor file is parsed and the initial attribute values have been applied to
the service, the ServiceConfigurator queries the ServiceBindingManager to apply any overrides that may ex-
ist for the service. The ServicesBindingManager acts a coordinator between the ServiceConfigurator, a store
of configuration overrides, the service configuration, and a configuration delegate that knows how to apply a
configuration to a service. The classes in this act are shown in Figure 10.1.

MBean Services Miscellany

355

Figure 10.1. Class diagram for the org.jboss.services.binding package of the ServiceBindingManager

The first thing to note about the ServiceBindingManager is that it implements the JMX MBeanRegistration

interface methods as its life cycle notification interface rather than the JBoss service interface. This is necessary
because the ServiceBindingManager operates on other services attribute values. Attributes are set before any
JBoss service life cycle methods are called, and so the ServiceBindingManager must be active as soon as it is
registered with the MBean server. The setup of the ServiceBindingManager occurs in the
postRegister(Boolean) callback method.

The ServiceBindingManager is associated with a ServicesStore through a ServicesStoreFactory. The Ser-

vicesStoreFactory is set through an attribute of the ServiceBindingManager. The set of configurable attrib-
utes of the ServiceBindingManager include:

• ServerName: The name of the server this manager is associated with. This is a logical name used to lookup
ServiceConfigs from the ServicesStore.

• StoreFactoryClassName: The name of the class that implements the ServicesStoreFatory interface. You
may provide your own implementation, or use the default XML based store
org.jboss.services.binding.XMLServicesStoreFactory .

• StoreURL: The URL of the configuration store contents. This is passed to the load(URL) method of the
ServicesStore instance obtained from the ServicesStoreFactory.

A ServicesStore is just a collection of ServiceConfig objects keyed by a JBoss instance name and the JMX
ObjectName of the service. A ServiceConfig is a collection of ServiceBinding objects and a ServicesCon-

figDelegate that knows how to map a ServiceBinding onto a target MBean. The ServiceConfig may also

MBean Services Miscellany

356

contain an arbitrary configuration for the delegate. A ServiceBinding is a named (interface, port) pair.

So what happens when the ServiceBindingManager is asked to override a service's configuration? The se-
quence of events is illustrated by Figure 10.2.

Figure 10.2. How the ServiceConfigurator queries the ServiceBindingManager

• The ServiceConfigurator queries the ServiceBindingManager to apply any configuration overrides for
the MBean given by the applyServiceConfig method JMX ObjectName.

• The ServiceBindingManager queries the ServicesStore for the ServiceConfig for the named service,
specifying the identity of the JBoss server instance in which it is operating. This is an attribute of the Ser-

viceBindingManager , and can be taken from a system property as we will see in an example. If the Servi-

cesStore contains a configuration override for the indicated <serverName, serviceName> pair, it returns
the ServiceConfig.

• If there was a ServiceConfig, the ServiceBindingManager queries it for the name of the class implement-
ing the ServicesConfigDelegate interface.

• The ServicesConfigDelegate class is loaded using the thread context class loader and an instance is cre-
ated.

• The ServicesConfigDelegate instance is then asked to apply the ServiceConfig using the provided
MBeanServer. The delegate would using the delegate configuration information along with the binding(s) to
override the indicated attributes of the service by invoking attribute setters, or even operations on the ser-
vice using the MBeanServer. The target service name is available in the ServiceConfig.

That is the generic overview of the ServiceBindingManager. Let's take a look at how you can use this service
to bring up two JBoss instances of the default configuration set of services on the same machine to make this
more concrete.

10.3.1. Running Two JBoss Instances

JBoss ships with a service configuration ServiceBindingManager for the along with a sample ServicesStore

XML file for starting two JBoss instances on the same host. Here we will walk through the steps to bring up the
two instances and look at the sample configuration. Start by making two server configuration file sets called
jboss0 and jboss1 by running the following command from the book examples directory:

[nr@toki examples]$ ant -Dchap=chap10 -Dex=1 run-example
Buildfile: build.xml

MBean Services Miscellany

357

...
[echo] Preparing jboss0 configuration fileset
[mkdir] Created dir: /tmp/jboss-3.2.6/server/jboss0
[copy] Copying 259 files to /tmp/jboss-3.2.6/server/jboss0
[copy] Copying 1 file to /tmp/jboss-3.2.6/server/jboss0/conf
[copy] Copying 1 file to /tmp/jboss-3.2.6/server
[echo] Preparing jboss1 configuration fileset
[mkdir] Created dir: /tmp/jboss-3.2.6/server/jboss1
[copy] Copying 259 files to /tmp/jboss-3.2.6/server/jboss1

BUILD SUCCESSFUL

This creates duplicates of the server/default configuration file sets as server/jboss0 and server/jboss1,
and then replaces the conf/jboss-service.xml descriptor with one that has the ServiceBindingManager con-
figuration enabled as follows:

<mbean code="org.jboss.services.binding.ServiceBindingManager"
name="jboss.system:service=ServiceBindingManager">

<attribute name="ServerName">${jboss.server.name}</attribute>
<attribute name="StoreURL">${jboss.server.base.dir}/chap10ex1-bindings.xml</attribute>
<attribute name="StoreFactoryClassName">

org.jboss.services.binding.XMLServicesStoreFactory
</attribute>

</mbean>

The attribute values are:

• ServerName: This is the unique name for the JBoss server instance that will be used to distinguish what
configuration overrides to apply. Here the ${jboss.server.name} variable reference is the configuration
file set directory name, either jboss0 or jboss1 in this example.

• StoreURL: This is the location of the ServicesStore configuration data that defines the overrides for the
jboss0 and jboss1 instances. The ${jboss.server.base.dir} variable reference is the URL to the root of
the JBoss server directory. We are using the chap10ex1-bindings.xml which was installed as part of the
example 1 setup.

• StoreFactoryClassName: This the default XML based ServicesStore implement ion.

The chap10ex1-bindings.xml file contains two server configurations named jboss0 and jboss1. The jboss0

configuration uses the default settings for the ports, while the jboss1 configuration adds 100 to each port num-
ber. The bindings file is a duplicate of the docs/examples.binding-service.sample-bindings.xml with
jboss0 and jboss1 as the server names.

MBean Services Miscellany

358

Figure 10.3. The binding service XMLServicesStoreFactory DTD

The DTD showin in Figure 10.3. is the one supported by the XMLServicesStoreFactory class. The elements
are:

• service-bindings: the root element of the configuration file. It contains one or more server elements.

• server: This is the base of a JBoss server instance configuration. It has a required name attribute that
defines the JBoss instance name to which it applies. This is the name that correlates with the ServiceBind-

ingManagerServerName attribute value. The server element content consists of one or more service-con-

fig elements.

• service-config: This element represents a configuration override for an MBean service. It has a required
name attribute that is the JMX ObjectName string of the MBean service the configuration applies to. It also
has a required delegateClass name attribute that specifies the class name of the ServicesConfigDelegate

implementation that knows how to handle bindings for the target service. Its contents consists of an optional
delegate-config element and one or more binding elements.

• binding: A binding element specifies a named port, address pair. It has an optional name that can be used to
provide multiple binding for a service. An example would be multiple virtual hosts for a web container. The
port and address are specified via the optional port and host attributes respectively. If the port is not spe-
cified it defaults to 0 meaning choose an anonymous port. If the host is not specified it defaults to null
meaning any address.

• delegate-config: The delegate-config element is an arbitrary XML fragment for use by the ServicesCon-

figDelegate implementation. The hostName and portName attributes only apply to the AttributeMapping-

Delegate of the example and are there to prevent DTD aware editors from complaining about their exist-
ence in the AttributeMappingDelegate configurations. Generally both the attributes and content of the
delegate-config is arbitrary, but there is no way to specify and a element can have any number of attrib-
utes with a DTD.

The two ServicesConfigDelegate implementations are AttributeMappingDelegate and XSLTConfigDeleg-

ate. The AttributeMappingDelegate class is an implementation of the ServicesConfigDelegate that expects
a delegate-config element of the form:

<delegate-config portName="portAttrName" hostName="hostAttrName">
<attribute name="someAttrName">someHostPortExpr</attribute>
<!-- ... -->

</delegate-config>

The portAttrName is the attribute name of the MBean service to which the binding port value should be ap-
plied, and the hostAttrName is the attribute name of the MBean service to which the binding host value should
be applied. If the portName attribute is not specified then the binding port is not applied. Likewise, if the host-

Name attribute is not specified then the binding host is not applied. The optional attribute element(s) specify ar-
bitrary MBean attribute names whose values are a function of the host and/or port settings. Any reference to
${host} in the attribute content is replaced with the host binding and any ${port} reference is replaced with
the port binding. The portName, hostName attribute values and attribute element content may reference system
properties using the ${x} syntax that is supported by the JBoss services descriptor.

The sample listing illustrates the usage of AttributeMappingDelegate.

<service-config name="jboss:service=Naming"
delegateClass="org.jboss.services.binding.AttributeMappingDelegate">

<delegate-config portName="Port"/>

MBean Services Miscellany

359

<binding port="1099" />
</service-config>

Here the jboss:service=Naming MBean service has its Port attribute value overridden to 1099. The corres-
ponding setting from the jboss1 server configuration overrides the port to 1199.

The XSLTConfigDelegate class is an implementation of the ServicesConfigDelegate that expects a deleg-

ate-config element of the form:

<delegate-config>
<xslt-config configName="ConfigurationElement"><![CDATA[

Any XSL document contents...
]]>

</xslt-config>
<xslt-param name="param-name">param-value</xslt-param>
<!-- ... -->

</delegate-config>

The xslt-config child element content specifies an arbitrary XSL script fragment that is to be applied to the
MBean service attribute named by the configName attribute. The named attribute must be of type
org.w3c.dom.Element . The optional xslt-param elements specify XSL script parameter values for parameters
used in the script. There are two XSL parameters defined by default called host and port, and their values are
set to the configuration host and port bindings.

The XSLTConfigDelegate is used to transform services whose port/interface configuration is specified using
a nested XML fragment. The following illustrates an example from the jboss1 server section which maps the
Tomcat servlet container listening port to 8180 and maps the AJP listening port to 8109:

<!-- jbossweb-tomcat50.sar -->
<service-config name="jboss.web:service=WebServer"

delegateClass="org.jboss.services.binding.XSLTFileDelegate"
>
<delegate-config>

<xslt-config configName="ConfigFile"><![CDATA[
<xsl:stylesheet

xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>

<xsl:output method="xml" />
<xsl:param name="port"/>

<xsl:variable name="portAJP" select="$port - 71"/>
<xsl:variable name="portHttps" select="$port + 363"/>

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match = "Connector">
<Connector>

<xsl:for-each select="@*">
<xsl:choose>

<xsl:when test="(name() = 'port' and . = '8080')">
<xsl:attribute name="port"><xsl:value-of select="$port" />
</xsl:attribute>

</xsl:when>
<xsl:when test="(name() = 'port' and . = '8009')">

<xsl:attribute name="port"><xsl:value-of select="$portAJP" />
</xsl:attribute>

</xsl:when>
<xsl:when test="(name() = 'redirectPort')">

<xsl:attribute name="redirectPort"><xsl:value-of select="$portHttps" />
</xsl:attribute>

</xsl:when>
<xsl:when test="(name() = 'port' and . = '8443')">

<xsl:attribute name="port"><xsl:value-of select="$portHttps" />

MBean Services Miscellany

360

</xsl:attribute>
</xsl:when>
<xsl:otherwise>

<xsl:attribute name="{name()}"><xsl:value-of select="." />
</xsl:attribute>

</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
<xsl:apply-templates/>

</Connector>
</xsl:template>

<xsl:template match="*|@*">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>
]]>

</xslt-config>
</delegate-config>
<binding port="8180"/>

</service-config>

To test the sample configuration, start two JBoss instances using the jboss0 and jboss1 configuration file sets
created previously by running the chap10 example1 build. Looking at the console for the service port numbers
you should see the overridden mappings. For the jboss1 server for example, here are some of the non-standard
ports that show up:

16:04:39,246 INFO [WebService] Using RMI server codebase: http://toki.local:8183/
16:04:40,442 INFO [NamingService] Started jnpPort=1199, rmiPort=1198, backlog=50, bindAdd
ress=/0.0.0.0, Client SocketFactory=null, Server SocketFactory=org.jboss.net.sockets.Defau
ltSocketFactory@ad093076
16:05:28,596 INFO [Http11Protocol] Initializing Coyote HTTP/1.1 on http-0.0.0.0-8180
16:05:55,165 INFO [Http11Protocol] Starting Coyote HTTP/1.1 on http-0.0.0.0-8180
16:05:56,061 INFO [ChannelSocket] JK2: ajp13 listening on /0.0.0.0:8109

10.4. Scheduling Tasks

Java includes a simple timer based capability through the java.util.Timer and java.util.TimerTask utility
classes. JMX also includes a mechanism for scheduling JMX notifications at a given time with an optional re-
peat interval as the javax.management.timer.TimerMBean agent service.

JBoss includes two variations of the JMX timer service in the org.jboss.varia.scheduler.Scheduler and
org.jboss.varia.scheduler.ScheduleManager MBeans. Both MBeans rely on the JMX timer service for the
basic scheduling. They extend the behavior of the timer service as described in the following sections.

10.4.1. org.jboss.varia.scheduler.Scheduler

The Scheduler differs from the TimerMBean in that the Scheduler directly invokes a callback on an instance of
a user defined class, or an operation of a user specified MBean.

• InitialStartDate: Date when the initial call is scheduled. It can be either:

• NOW: date will be the current time plus 1 seconds

• A number representing the milliseconds since 1/1/1970

MBean Services Miscellany

361

• Date as String able to be parsed by SimpleDateFormat with default format pattern "M/d/yy h:mm a".If
the date is in the past the Scheduler will search a start date in the future with respect to the initial repe-
titions and the period between calls. This means that when you restart the MBean (restarting JBoss etc.)
it will start at the next scheduled time. When no start date is available in the future the Scheduler will
not start.

For example, if you start your Schedulable everyday at Noon and you restart your JBoss server then it will
start at the next Noon (the same if started before Noon or the next day if start after Noon).

• InitialRepetitions: The number of times the scheduler will invoke the target's callback. If -1 then the call-
back will be repeated until the server is stopped.

• StartAtStartup: A flag that determines if the Scheduler will start when it receives its startService life
cycle notification. If true the Scheduler starts on its startup. If false, an explicit startSchedule operation
must be invoked on the Scheduler to begin.

• SchedulePeriod: The interval between scheduled calls in milliseconds. This value must be bigger than 0.

• SchedulableClass: The fully qualified class name of the org.jboss.varia.scheduler.Schedulable inter-
face implementation that is to be used by the Scheduler . The SchedulableArguments and SchedulableAr-

gumentTypes must be populated to correspond to the constructor of the Schedulable implementation.

• SchedulableArguments: A comma seperated list of arguments for the Schedulable implementation class
constructor. Only primitive data types, String and classes with a constructor that accepts a String as its
sole aregument are supported.

• SchedulableArgumentTypes: A comma seperated list of argument types for the Schedulable implementa-
tion class constructor. This will be used to find the correct constructor via reflection. Only primitive data
types, String and classes with a constructor that accepts a String as its sole aregument are supported.

• SchedulableMBean: Specifies the fully qualified JMX ObjectName name of the schedulable MBean to be
called. If the MBean is not available it will not be called but the remaining repetitions will be decremented.
When using SchedulableMBean the SchedulableMBeanMethod must also be specified.

• SchedulableMBeanMethod: Specifies the operation name to be called on the schedulable MBean. It can
optionally be followed by an opening bracket, a comma seperated list of parameter keywords, and a closing
bracket. The supported parameter keywords include:

• NOTIFICATION which will be replaced by the timers notification instance
(javax.management.Notification)

• DATE which will be replaced by the date of the notification call (java.util.Date)

• REPETITIONS which will be replaced by the number of remaining repetitions (long)

• SCHEDULER_NAME which will be replaced by the ObjectName of the Scheduler

• Any fully qualified class name which the Scheduler will set to null.

A given Scheduler instance only support a single schedulable instance. If you need to configure multiple sched-
uled events you would use multiple Scheduler instances, each with a unique ObjectName. The following is an
example of configuring a Scheduler to call a Schedulable implementation as well as a configuration for call-
ing a MBean.

MBean Services Miscellany

362

Example 10.2. An example Scheduler jboss-service descriptor

<server>

<mbean code="org.jboss.varia.scheduler.Scheduler"
name="jboss.docs.chap10:service=Scheduler">

<attribute name="StartAtStartup">true</attribute>
<attribute name="SchedulableClass">org.jboss.chap10.ex2.ExSchedulable</attribute>
<attribute name="SchedulableArguments">TheName,123456789</attribute>
<attribute name="SchedulableArgumentTypes">java.lang.String,long</attribute>

<attribute name="InitialStartDate">NOW</attribute>
<attribute name="SchedulePeriod">60000</attribute>
<attribute name="InitialRepetitions">-1</attribute>

</mbean>

</server>

The SchedulableClass org.jboss.chap10.ex2.ExSchedulable example class is given in Example 10.3.

Example 10.3. The ExSchedulable class code

package org.jboss.chap10.ex2;

import java.util.Date;
import org.jboss.varia.scheduler.Schedulable;

import org.apache.log4j.Logger;

/**
* A simple Schedulable example.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.7 $
*/

public class ExSchedulable implements Schedulable
{

private static final Logger log = Logger.getLogger(ExSchedulable.class);

private String name;
private long value;

public ExSchedulable(String name, long value)
{

this.name = name;
this.value = value;
log.info("ctor, name: " + name + ", value: " + value);

}

public void perform(Date now, long remainingRepetitions)
{

log.info("perform, now: " + now +
", remainingRepetitions: " + remainingRepetitions +
", name: " + name + ", value: " + value);

}
}

Deploy the timer sar by running:

[nr@toki examples]$ ant -Dchap=chap10 -Dex=2 run-example
...
run-example2:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy

MBean Services Miscellany

363

The server console shows the following which includes the first two timer invocations, seperated by 60
seconds:

16:44:49,275 INFO [ExSchedulable] ctor, name: TheName, value: 123456789
16:44:50,365 INFO [ExSchedulable] perform, now: Fri Oct 15 16:44:50 CDT 2004, remainingRe
petitions: -1, name: TheName, value: 123456789
16:45:50,317 INFO [ExSchedulable] perform, now: Fri Oct 15 16:45:50 CDT 2004, remainingRe
petitions: -1, name: TheName, value: 123456789
16:46:50,319 INFO [ExSchedulable] perform, now: Fri Oct 15 16:46:50 CDT 2004, remainingRe
petitions: -1, name: TheName, value: 123456789

10.5. The JBoss Logging Framework

In 3.2 the logging framework has been generalized to allow for any particular framework implementation. The
JBoss classes themselves use the org.jboss.logging.Logger as the factory and logging interface. This class is
essentially identical to the Log4j org.apache.log4j.Logger class, with the addition of support for a trace level
priority. The Logger class delegates to a LoggerPlugin instance. The class diagram for Logger and LoggerPlu-

gin are shown in Figure 10.4.

Figure 10.4. The JBoss logging framework classes.

By default we continue to use the Log4j framework as the underlying logging implementation, and this is what
the org.jboss.logging.Log4jLoggerPlugin provides. To integrate an alternate logging implementation, you
would provide an implementation of the LoggerPlugin interface and specify that it should be used by setting the
org.jboss.logging.Logger.pluginClass system property to implementation class name. To disable all log-

MBean Services Miscellany

364

ging, you can use the org.jboss.logging.NullLoggerPlugin . This implementation simply provides empty
versions of the LoggerPlugin methods.

10.5.1. org.jboss.logging.Log4jService

The Log4jService MBean configures the Apache log4j system. JBoss uses the log4j framework as its internal
logging API.

• ConfigurationURL: The URL for the log4j configuration file. This can refer to either a XML document
parsed by the org.apache.log4j.xml.DOMConfigurator or a Java properties file parsed by the
org.apache.log4j.PropertyConfigurator . The type of the file is determined by the URL content type, or
if this is null, the file extension. The default setting of resource:log4j.xml refers to the conf/log4j.xml

file of the active server configuration file set.

• RefreshPeriod: The time in seconds between checks for changes in the log4 configuration specified by the
ConfigurationURL attribute. The default value is 60 seconds.

• CatchSystemErr: This boolean flag if true, indicates if the System.err stream should be redirected onto a
log4j category called STDERR. The default is true.

• CatchSystemOut: This boolean flag if true, indicates if the System.out stream should be redirected onto a
log4j category called STDOUT. The default is true.

• Log4jQuietMode: This boolean flag if true, sets the org.apache.log4j.helpers.LogLog.setQuiteMode.
As of log4j1.2.8 this needs to be set to avoid a possible deadlock on exception at the appender level. See
bug#696819.

10.6. RMI Dynamic Class Loading

10.6.1. org.jboss.web.WebService

The WebService MBean provides dynamic class loading for RMI access to the server EJBs. The configurable
attributes for the WebService are as follows:

• Port: the WebService listening port number. A port of 0 will use any available port.

• Host: Set the name of the public interface to use for the host portion of the RMI codebase URL.

• BindAddress: the specific address the WebService listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connect requests to one of its addresses.

• Backlog: The maximum queue length for incoming connection indications (a request to connect) is set to
the backlog parameter. If a connection indication arrives when the queue is full, the connection is refused.

• DownloadServerClasses: A flag indicating if the server should attempt to download classes from thread
context class loader when a request arrives that does not have a class loader key prefix.

MBean Services Miscellany

365

11
The CMP Engine

This chapter details the operation of the JBoss CMP2 engine. It does not provide an introduction to the EJB 2.0
container managed persistence (CMP2.0) model. To get started with CMP2.0, see the J2EE tutorial (ht-
tp://java.sun.com/j2ee/tutorial/index.html), or Enterprise Java Beans - 3rd edition along with the companion
JBoss workbook (http://www.oreilly.com/catalog/entjbeans3/workbooks/index.html).

11.1. Getting Started

JBossCMP is the default persistence manager for EJB 2.0 applications. Because JBossCMP is a core feature of
JBoss, no action beyond the basic JBoss installation is required to use CMP 2.0, but there are some details to
note when creating a new EJB 2.0 application or when upgrading an EJB 1.1 application.

When JBoss deploys an EJB JAR file, it uses the DOCTYPE of the ejb-jar.xml deployment descriptor to de-
termine the version of the EJB jar. The correct DOCTYPE for EJB 2.0 is given below.

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"

"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

If the public identifier of the DOCTYPE is "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans

2.0//EN" JBossCMP will use the Standard CMP 2.x EntityBean configuration in the standardjboss.xml file.
If you have an application that uses a custom entity bean configuration, and you are upgrading to EJB 2.0, you
must change the persistence-manager and add the new interceptors (see the Standard CMP 2.x EntityBean

configuration in the standardjboss.xml file for details). No further configuration is necessary to deploy and
run your EJB 2.0 application successfully.

11.1.1. Example Code

The full source code for all of the examples presented in this documentation is available in the examples/

src/main/org/jboss/cmp2 directory. The code represents a Crime Portal, which models criminal organiza-
tions. A diagram of the portions of the Criminal Portal data model used in the example code is shown in Fig-
ure 11.1.

366

http://java.sun.com/j2ee/tutorial/index.html
http://java.sun.com/j2ee/tutorial/index.html
http://www.oreilly.com/catalog/entjbeans3/workbooks/index.html

Figure 11.1. The main CMP2 example classes

To build the example code, execute ant with the following arguments:

[nr@toki examples]$ ant -Dchap=cmp2 config
...
config:

[copy] Copying 1 file to /tmp/jboss-3.2.6/server/default/deploy
[echo] Waiting for 5 seconds for deploy...
[junit] .
[junit] Time: 3.474

[junit] OK (1 test)

This command builds and deploys the application to the JBoss server. When you start your JBoss server, or if it
is already running, you should see the following deployment messages:

09:54:42,018 INFO [EjbModule] Deploying OrganizationEJB
09:54:42,399 INFO [EjbModule] Deploying GangsterEJB
09:54:42,438 INFO [EjbModule] Deploying JobEJB
09:54:42,468 INFO [EjbModule] Deploying LocationEJB
09:54:42,507 INFO [EjbModule] Deploying EJBTestRunnerEJB
09:54:42,587 INFO [EjbModule] Deploying ReadAheadEJB
09:54:46,300 WARN [JDBCTypeFactory] Type not mapped: int
09:54:47,223 INFO [EJBDeployer] Deployed: file:/private/tmp/jboss-3.2.6/server/default/de
ploy/cmp2-ex1.jar

The CMP Engine

367

09:54:48,841 INFO [OrganizationBean$Proxy] Creating organization Yakuza, Japanese Gangste
rs
09:54:48,918 INFO [OrganizationBean$Proxy] Creating organization Mafia, Italian Bad Guys
09:54:48,925 INFO [OrganizationBean$Proxy] Creating organization Triads, Kung Fu Movie Ex
tras
09:54:48,931 INFO [GangsterBean$Proxy] Creating Gangster 0 'Bodyguard' Yojimbo
09:54:49,068 INFO [GangsterBean$Proxy] Creating Gangster 1 'Master' Takeshi
09:54:49,106 INFO [GangsterBean$Proxy] Creating Gangster 2 'Four finger' Yuriko
09:54:49,117 INFO [GangsterBean$Proxy] Creating Gangster 3 'Killer' Chow
09:54:49,133 INFO [GangsterBean$Proxy] Creating Gangster 4 'Lightning' Shogi
09:54:49,143 INFO [GangsterBean$Proxy] Creating Gangster 5 'Pizza-Face' Valentino
09:54:49,184 INFO [GangsterBean$Proxy] Creating Gangster 6 'Toohless' Toni
09:54:49,202 INFO [GangsterBean$Proxy] Creating Gangster 7 'Godfather' Corleone
09:54:49,215 INFO [JobBean$Proxy] Creating Job 10th Street Jeweler Heist
09:54:49,224 INFO [JobBean$Proxy] Creating Job The Greate Train Robbery
09:54:49,258 INFO [JobBean$Proxy] Creating Job Cheap Liquor Snatch and Grab

Before the chapter tests can be run, the log level of JBossCMP must be increased. To enable debug logging for
the CMP subsystem, add the following category to your log4j.xml file:

<category name="org.jboss.ejb.plugins.cmp">
<priority value="DEBUG"/>

</category>

In addition to this, it is necessary to decrease the threshold on the CONSOLE appender to allow debug level mes-
sages to be logged to the console. The following changes also need to be applied to the log4j.xml file.

<!-- ============================== -->
<!-- Append messages to the console -->
<!-- ============================== -->
<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

<param name="Threshold" value="DEBUG"/>
<param name="Target" value="System.out"/>
<layout class="org.apache.log4j.PatternLayout">

<!-- The default pattern: Date Priority [Category] Message\n -->
<param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] %m%n"/>

</layout>
</appender>

To see the full workings of the CMP engine you would need to enable the custom TRACE level priority on the
org.jboss.ejb.plugins.cmp category as shown here:

<category name="org.jboss.ejb.plugins.cmp">
<priority value="TRACE" class="org.jboss.logging.XLevel"/>

</category>

One final note before moving on to look at how to run the chapter examples. Since the beans in the examples
are configured to remove their tables on undeployment, anytime you restart the JBoss server you need to rerun
the config target to reload the example data. Also, if you make changes to the examples and want to redeploy
the example EJB JAR, this also should be done using the config target so that the example data is reloaded.

11.1.2. Tests

The first test target illustrates a number of the customization features that will be discussed throughout this
chapter. To run these tests execute the following ant target:

[nr@toki examples]ant -Dchap=cmp2 -Dex=test run-example
14:03:27,920 DEBUG [OrganizationEJB#findByPrimaryKey] Executing SQL: SELECT name FROM ORGA
NIZATION WHERE name=?
14:03:28,011 DEBUG [OrganizationEJB] Executing SQL: SELECT desc, the_boss FROM ORGANIZATIO

The CMP Engine

368

N WHERE (name=?)
14:03:28,020 DEBUG [OrganizationEJB] Executing SQL: SELECT id FROM GANGSTER WHERE (organiz
ation=?)
14:03:28,044 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,052 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,070 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,229 DEBUG [GangsterEJB#findBadDudes_ejbql] Executing SQL: SELECT t0_g.id FROM GAN
GSTER t0_g WHERE (t0_g.badness > ?)
14:03:28,256 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,264 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,270 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,276 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,281 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,395 DEBUG [GangsterEJB#findBadDudes_jbossql] Executing SQL: SELECT t0_g.id, t0_g.
badness FROM GANGSTER t0_g WHERE (t0_g.badness > ?) ORDER BY t0_g.badness DESC
14:03:28,417 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,423 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,429 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,439 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,446 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,605 DEBUG [GangsterEJB#findBadDudes_declaredsql] Executing SQL: SELECT id FROM GA
NGSTER WHERE badness > ? ORDER BY badness DESC
14:03:28,613 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,631 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,641 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,647 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,655 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,783 DEBUG [GangsterEJB#ejbSelectBoss_ejbql] Executing SQL: SELECT DISTINCT t0_und
erling_organization_theBos.id FROM GANGSTER t1_underling, ORGANIZATION t4_underling_organi
zation, GANGSTER t0_underling_organization_theBos WHERE ((t1_underling.name = ?) OR (t1_un
derling.nick_name = ?)) AND t1_underling.organization=t4_underling_organization.name AND t
4_underling_organization.the_boss=t0_underling_organization_theBos.id
14:03:28,815 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
14:03:28,822 DEBUG [GangsterEJB#ejbSelectBoss_ejbql] Executing SQL: SELECT DISTINCT t0_und
erling_organization_theBos.id FROM GANGSTER t1_underling, ORGANIZATION t4_underling_organi
zation, GANGSTER t0_underling_organization_theBos WHERE ((t1_underling.name = ?) OR (t1_un
derling.nick_name = ?)) AND t1_underling.organization=t4_underling_organization.name AND
t4_underling_organization.the_boss=t0_underling_organization_theBos.id
14:03:28,829 DEBUG [GangsterEJB#findByPrimaryKey] Executing SQL: SELECT id FROM GANGSTER W
HERE id=?
...
14:03:29,970 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
14:03:29,980 DEBUG [GangsterEJB] Executing SQL: SELECT cell_area, cell_exch, cell_ext, pa
ge_area, page_exch, page_ext, email FROM GANGSTER WHERE (id=?)
14:03:29,987 DEBUG [GangsterEJB] Executing SQL: UPDATE GANGSTER SET cell_area=?, cell_exc
h=?, cell_ext=?, page_area=?, page_exch=?, page_ext=?, email=? WHERE id=?
14:03:29,995 DEBUG [GangsterEJB] Rows affected = 1

These tests exercise various finders, selectors and object to table mapping issues. We will refer to the tests

The CMP Engine

369

throughout the chapter.

11.1.3. Read-ahead

The other main target runs a set of tests to demonstrate the optimized loading configurations presented in Sec-
tion 11.7. Now that the logging is setup correctly, the read-ahead tests will display useful information about the
queries performed. Note that you do not have to restart the JBoss server for it to recognize the changes to the
log4j.xml file, but it may take a minute or so. The following shows the actual execution of the readahead client:

[starksm@banshee examples]$ ant -Dchap=cmp2 -Dex=readahead run-example
Buildfile: build.xml
...
run-example:

run-examplereadahead:
[junit] .
[junit] Time: 0.561

[junit] OK (1 test)

When the readahead client is executed, all of the SQL queries executed during the test are displayed in the
JBoss server console. The important items of note when analyzing the output are the number of queries ex-
ecuted, the columns selected, and the number of rows loaded. The following shows the read-ahead none portion
of the JBoss server console output from readahead:

##
read-ahead none
###
08:31:15,892 DEBUG [findAll_none] Executing SQL: SELECT t0_g.id, t0_g.id FROM GANGSTER
t0_g ORDER BY t0_g.id ASC
08:31:15,902 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,912 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,912 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,912 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,922 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,922 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,932 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,932 DEBUG [GangsterEJB] Executing SQL: SELECT name, nick_name, badness, hangout,
organization FROM GANGSTER WHERE (id=?)
08:31:15,942 INFO [ReadAheadTest]
###
##

We will revisit this example and explore the output when we discuss the settings for optimized loading.

11.2. The jbosscmp-jdbc Structure

The jbosscmp-jdbc.xml descriptor is used to control the behavior of the JBossCMP engine. This can be done
globally through the conf/standardjbosscmp-jdbc.xml descriptor found in the server configuration file set, or
per EJB JAR deployment via a META-INF/jbosscmp-jdbc.xml descriptor. We will touch on the elements of the
as we go through the following sections which describe the capabilities of the JBossCMP engine. The top level

The CMP Engine

370

elements are shown in Figure 11.2.

Figure 11.2. The jbosscmp-jdbc top level content model.

• defaults: The defaults section allows for the specification of default behavior/settings for behavior that con-
trols entity beans. Use of this section simplifies the amount of information needed for the common behavi-
ors found in the entity beans section. See Section 11.12 for the details of the defaults content.

• enterprise-beans: The enterprise-beans element allows for customization of entity beans defined in the
ejb-jar.xml enterprise-beans descriptor. This is described in detail in Section 11.3.

• relationships: The relationships element allows for the customization of tables and the loading behavior
of entity relationships. This is described in detail in Section 11.5.

• dependent-value-classes: The dependent-value-classes element allows for the customization of the
mapping of dependent value classes to tables. This is described in detail in Section 11.4.6 (DVCs).

• type-mappings: The type-mappings element defines the Java to SQL type mappings for a database, along
with SQL templates, and function mappings. This is described in detail in Section 11.13.

• entity-commands: The entity-commands element allows for the definition of the entity creation command
instances that know how to create an entity instance in a persistent store. This is described in detail in Sec-
tion 11.11.

• user-type-mappings: The user-type-mappings elements defines a mapping of a user types to a column
using a mapper class. A mapper is like a mediator: when storing, it takes an instance of the user type and
translates it to a column value. When loading, it takes a column value and translates it to an instance of the
user type. Details of the user type mappings are described in Section 11.13.3.

• reserved-words: The reserved-words element defines one or more reserved words that should be escaped
when generating tables. Each reserved word is specified as the content of a word element.

The CMP Engine

371

3The term local interface is used to refer to the EJBLocalObject alone, as well as to refer to the EJBLocalObject/EJBLocalHome combina-
tion. Although this is confusing, it is the current usage of the term in the EJB community.
4Most J2EE servers, including JBoss, can optimize in-VM calls over a remote interface by using pass-by-reference semantics.

Example 11.1. DTD for jbosscmp-jdbc.xml

The DTD for the jbosscmp-jdbc.xml descriptor can be found in
JBOSS_DIST/docs/dtd/jbosscmp-jdbc_3_2.dtd. The public doctype for this DTD is:

<!DOCTYPE jbosscmp-jdbc PUBLIC
"-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">

11.3. Entity Beans

Although several new features have been added, and there have been major changes to cmp-fields and finders,
the basic entity bean structure has not changed much in CMP 2.0. A new feature of EJB 2.0 is the addition of
local interfaces. A local interface is composed of two interfaces, the local interface and the local home
interface3. These interfaces are conceptually the same thing as the remote interface and home interface
(sometimes referred to as the remote home), except that local interfaces are only accessible within the same
Java VM. This allows local interfaces to use pass-by-reference semantics, removing the overhead associated
with serializing and deserializing every method parameter4. Local interfaces are not unique to CMP and are not
discussed in this documentation. The simplified code for the Gangster entity follows:

Example 11.2. Entity Local Home Interface

// Gangster Local Home Interface
public interface GangsterHome extends EJBLocalHome {

Gangster create(Integer id, String name, String nickName)
throws CreateException;

Gangster findByPrimaryKey(Integer id)
throws FinderException;

}

Example 11.3. Entity Local Interface

// Gangster Local Interface
public interface Gangster extends EJBLocalObject {

Integer getGangsterId();
String getName();
String getNickName();
void setNickName(String nickName);

}

Example 11.4. Entity Implementation Class

// Gangster Implementation Class
public abstract class GangsterBean

implements EntityBean
{

private EntityContext ctx;

The CMP Engine

372

private Category log = Category.getInstance(getClass());
public Integer ejbCreate(Integer id, String name, String nickName)

throws CreateException
{

log.info("Creating Gangster " + id + " '" + nickName + "' "+ name);
setGangsterId(id);
setName(name);
setNickName(nickName);
return null;

}

public void ejbPostCreate(Integer id, String name, String nickName) {
}

// CMP field accessors ---
public abstract Integer getGangsterId();
public abstract void setGangsterId(Integer gangsterId);
public abstract String getName();
public abstract void setName(String name);
public abstract String getNickName();
public abstract void setNickName(String nickName);
public abstract int getBadness();
public abstract void setBadness(int badness);
public abstract ContactInfo getContactInfo();
public abstract void setContactInfo(ContactInfo contactInfo);
//...

// EJB callbacks ---
public void setEntityContext(EntityContext context) { ctx = context; }
public void unsetEntityContext() { ctx = null; }
public void ejbActivate() { }
public void ejbPassivate() { }
public void ejbRemove() { log.info("Removing " + getName()); }
public void ejbStore() { }
public void ejbLoad() { }

}

The base declaration of an entity in the ejb-jar.xml file has not changed much in CMP 2.0. The declaration of
the GangsterEJB interfaces and cmp fields is shown below.

Example 11.5. The ejb-jar.xml Entity Declaration

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<display-name>CMP 2.0 Lab Jar</display-name>
<enterprise-beans>

<entity>
<display-name>Gangster Entity Bean</display-name>
<ejb-name>GangsterEJB</ejb-name>
<local-home>org.jboss.cmp2.crimeportal.GangsterHome</local-home>
<local>org.jboss.cmp2.crimeportal.Gangster</local>
<ejb-class>org.jboss.cmp2.crimeportal.GangsterBean</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.Integer</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>gangster</abstract-schema-name>
<cmp-field>

<field-name>gangsterId</field-name>
</cmp-field>
<cmp-field>

<field-name>name</field-name>

The CMP Engine

373

</cmp-field>
<cmp-field>

<field-name>nickName</field-name>
</cmp-field>
<cmp-field>

<field-name>badness</field-name>
</cmp-field>
<cmp-field>

<field-name>contactInfo</field-name>
</cmp-field>
<primkey-field>gangsterId</primkey-field>
<!-- ... -->

</entity>
</enterprise-beans>

</ejb-jar>

The new local-home and local elements are equivalent to the home and remote elements. The cmp-version

element is new and can be either 1.x or the default 2.x. This element was added so 1.x and 2.x entities could be
mixed in the same application. The abstract-schema-name element is also new and is used to identify this en-
tity type in EJB-QL queries, which are discussed in Section 11.6.

11.3.1. Entity Mapping

The JBossCMP configuration for the entity is declared with an entity element in the jbosscmp-jdbc.xml file.
This file is located in the META-INF directory of the EJB JAR and contains all of the optional configuration in-
formation for JBossCMP. The entity elements are grouped together in the enterprise-beans element under
the top level jbosscmp-jdbc element. An example entity configuration is shown below.

Example 11.6. A sample jbosscmp-jdbc.xml Entity Mapping

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jbosscmp-jdbc PUBLIC

"-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">

<jbosscmp-jdbc>
<!-- ... -->
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<table-name>gangster</table-name>
<!-- CMP Fields (see CMP-Fields) -->
<!-- Load Groups (see Load Groups)-->
<!-- Queries (see Queries) -->

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

In this case the DOCTYPE declaration is optional, but will reduce configuration errors. In addition, all of the
elements are optional except for ejb-name, which is used to match the configuration to an entity declared in the
ejb-jar.xml file. Unless noted otherwise, the default values come from the defaults section of either the
jbosscmp-jdbc.xml file, or the conf/standardjbosscmp-jdbc.xml file for the current server configuration file
set. The defaults section is discussed in Section 11.12.

A detailed description of each entity element follows:

• ejb-name: This required element is the name of the EJB to which this configuration applies. This element

The CMP Engine

374

must match an ejb-name of an entity in the ejb-jar.xml file.

• datasource: This optional element is the jndi-name used to look up the datasource. All database connec-
tions used by an entity or relation-table are obtained from the datasource. Having different datasources for
entities is not recommended, as it vastly constrains the domain over which finders and ejbSelects can query.
The default is java:/DefaultDS unless overridden in the defaults section.

• datasource-mapping: This optional element specifies the name of the type-mapping, which determines
how Java types are mapped to SQL types, and how EJB-QL functions are mapped to database specific func-
tions. Type mappings are discussed in Section 11.13.2. The default is Hypersonic SQL unless overridden in
the defaults section.

• create-table: This optional element when true, specifies that JBossCMP should attempt to create a table for
the entity. When the application is deployed, JBossCMP checks if a table already exists before creating the
table. If a table is found, it is logged, and the table is not created. This option is very useful during the early
stages of development when the table structure changes often. The default is false unless overridden in the
defaults section.

• alter-table: If create-table is used to automatically create the schema, alter-table can be used to keep
the schema current with changes to the entity bean. Alter table will perform the following specific tasks:

• new fields will be created
• fields which are no longer used will be removed
• string fields which are shorter than the declared length will have their length increased to the declared

length. (not supported by all databases)

• remove-table: This optional element when true, JBossCMP will attempt to drop the table for each entity
and each relation table mapped relationship. When the application is undeployed, JBossCMP will attempt to
drop the table. This option is very useful during the early stages of development when the table structure
changes often. The default is false unless overridden in the defaults section.

• post-table-create: This optional element specifies an arbitrary SQL statement that should be executed im-
mediately after the database table is created. This command is only executed if create-table is true and
the table did not previously exist.

• read-only: This optional element when true specifies that the bean provider will not be allowed to change
the value of any fields. A field that is read-only will not be stored in, or inserted into, the database. If a
primary key field is read-only, the create method will throw a CreateException. If a set accessor is called
on a read-only field, it throws an EJBException. Read-only fields are useful for fields that are filled in by
database triggers, such as last update. The read-only option can be overridden on a per cmp-field basis,
and is discussed in Section 11.4.4. The default is false unless overridden in the defaults section.

• read-time-out: This optional element is the amount of time in milliseconds that a read on a read-only field
is valid. A value of 0 means that the value is always reloaded at the start of a transaction, and a value of -1
means that the value never times out. This option can also be overridden on a per cmp-field basis. If read-
only is false, this value is ignored. The default is -1 unless overridden in the defaults section.

• row-locking: This optional element if true specifies that JBossCMP will lock all rows loaded in a transac-
tion. Most databases implement this by using the SELECT FOR UPDATE syntax when loading the entity, but
the actual syntax is determined by the row-locking-template in the datasource-mapping used by this en-
tity. The default is false unless overridden in the defaults section.

• pk-constraint: This optional element if true specifies that JBossCMP will add a primary key constraint
when creating tables. The default is true unless overridden in the defaults section.

The CMP Engine

375

• read-ahead: This optional element controls caching of query results and cmr-fields for the entity. This
option is discussed in Section 11.7.3.

• list-cache-max: This optional element specifies the number of read-lists that can be tracked by this entity.
This option is discussed in on-load. The default is 1000 unless overridden in the defaults section.

• fetch-size: This optional element specifies the number of entities to read in one round-trip to the underlying
datastore. The default is 0 unless overridden in the defaults section.

• clean-read-ahead-on-load: When an entity is loaded from the read ahead cache, JBoss can remove the data
used from the read ahead cache. The default is false.

• table-name: This optional element is the name of the table that will hold data for this entity. Each entity in-
stance will be stored in one row of this table. The default is the ejb-name.

• cmp-field: The optional element allows one to define how the ejb-jar.xml cmp-field is mapped onto the
persistence store. This is discussed in Section 11.4.

• load-groups: This optional element specifies one or more groupings of CMP fields to declare load group-
ings of fields. This is discussed in Section 11.7.2.

• eager-load-groups: This optional element defines one or more load grouping as eager load groups. This is
discussed in Section 11.8.2.

• lazy-load-groups: This optional element defines one or more load grouping as lazy load groups. This is
discussed in Section 11.8.3.

• query: This optional element specifies the definition of finders and selectors. This is discussed in Sec-
tion 11.6.

• unknown-pk: This optional element allows one to define how an unknown primary key type of
java.lang.Object maps to the persistent store.

• entity-command: This optional element allows one to define the entity creation command instance. Typic-
ally this is used to define a custom command instance to allow for primary key generation. This is described
in detail in Section 11.11.

• optimistic-locking: This optional element defines the strategy to use for optimistic locking. This is de-
scribed in detail in Section 11.10.

• audit: This optional element defines the CMP fields that will be audited. This is described in detail in Sec-
tion 11.4.5.

11.4. CMP-Fields

11.4.1. CMP-Field Abstract Accessors

Although CMP fields have not changed in CMP 2.0 with regards to functionality, they are no longer declared
using fields in the bean implementation class. In CMP 2.0, CMP fields are not directly accessible; rather each
CMP field is declared in the bean implementation class of the entity with a set of abstract accessor methods.
Abstract accessors are similar to JavaBean property accessors, except no implementation is given. For example,
the following listing declares the gangsterId, name, nickName, and badness CMP field accessors in the gang-
ster entity:

The CMP Engine

376

Example 11.7. Sample cmp-field abstract accessor declaration

public abstract class GangsterBean implements EntityBean {
public abstract Integer getGangsterId();
public abstract void setGangsterId(Integer gangsterId);
public abstract String getName();
public abstract void setName(String param);
public abstract String getNickName();
public abstract void setNickName(String param);
public abstract int getBadness();
public abstract void setBadness(int param);

}

Each CMP field is required to have both a getter and a setter method, and each accessor method must be de-
clared public abstract.

11.4.2. CMP-Field Declaration

The declaration of a cmp-field in the ejb-jar.xml file has not changed at all in EJB 2.0. For example, to de-
clare the gangsterId, name, nickName and badness fields defined in Example 11.7 you would add the follow-
ing to the ejb-jar.xml file:

Example 11.8. The ejb-jar.xml cmp-field Declaration

<ejb-jar>
<enterprise-beans>
<entity>

<ejb-name>GangsterEJB</ejb-name>
<cmp-field><field-name>gangsterId</field-name></cmp-field>
<cmp-field><field-name>name</field-name></cmp-field>
<cmp-field><field-name>nickName</field-name></cmp-field>
<cmp-field><field-name>badness</field-name></cmp-field>

</entity>
</enterprise-beans>

</ejb-jar>

11.4.3. CMP-Field Column Mapping

The mapping of an ejb-jar.xml cmp-field is declared in a jbosscmp-jdbc.xml cmp-field element within the
entity. The content model of the cmp-field element of the jbosscmp-jdbc.xml is shown below.

The following is an example usage of cmp-field mapping.

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>GangsterEJB</ejb-name>
<table-name>gangster</table-name>

<cmp-field>
<field-name>gangsterId</field-name>
<column-name>id</column-name>

</cmp-field>
<cmp-field>

<field-name>name</field-name>
<column-name>name</column-name>
<not-null/>

The CMP Engine

377

</cmp-field>
<cmp-field>

<field-name>nickName</field-name>
<column-name>nick_name</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(64)</sql-type>

</cmp-field>
<cmp-field>

<field-name>badness</field-name>
<column-name>badness</column-name>

</cmp-field>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

In the cmp-field element, you can control the name and datatype of the column. A detailed description of each
element follows:

• field-name: This required element is the name of the cmp-field that is being configured. It must match the
field-name element of a cmp-field declared for this entity in the ejb-jar.xml file.

• column-name: This optional element is the name of the column to which the cmp-field is mapped. The
default is to use the field-name value.

• not-null: This optional element indicates that JBossCMP should add a NOT NULL to the end of the
column declaration when automatically creating the table for this entity. The default for primary key fields
and primitives not null.

• jdbc-type: This is the JDBC type that is used when setting parameters in a JDBC PreparedStatement or
loading data from a JDBC ResultSet. The valid types are defined in java.sql.Types. Only required if sql-
type is specified, default is based on datasourcemapping

• sql-type: This is the SQL type that is used in create table statements for this field. Valid sql-types are only
limited by your database vendor. Only required if jdbc-type is specified, default is based on datasourcemap-
ping

• property: This optional element allows one to define how the properties of a dependent value class cmp-
field should be mapped to the persistent store. This is discussed further in Dependent Value Classes
(DVCs).

• auto-increment: The presence of this optional field indicates that it is auto-incremented by the database
layer. This is used to map a field to a generated column as well as an externally manipulated column.

• dbindex: The presence of this optional field indicates that the server should create an index on the corres-
ponding column in the database, and the index name will be fieldname_index.

• check-dirty-after-get: This value defaults to false for primitive types and the basic java.lang immutable
wrappers (Integer, String, etc...). For potentially mutable objects, JBoss will mark they field as potentially
dirty after a get operation. If the dirty check on an object is too expensive, you can optimize it away by set-
ting check-dirty-after-get to false.

• state-factory: This specfies class name of a state factory object which can perform dirty checking for this
field. State factory classes must implement the CMPFieldStateFactory interface.

11.4.4. Read-only Fields

The CMP Engine

378

Another benefit of abstract accessors for cmp-fields is the ability to have read-only fields. The 1.x CMP engine,
JAWS, supported read-only with read-time-out for entities. However, the problem with CMP 1.x was the bean
provider could always change the value of a field on a read-only entity, and there was nothing the container
could do. With CMP 2.x, the container provides the implementation for the accessor, and therefore can throw
an exception when the bean provider attempts to set the value of a read-only bean.

In JBossCMP this feature has been extended to the field level with the addition of the read-only and read-

time-out elements to the cmp-field element. These elements work the same way as they do at the entity level.
If a field is read-only, it will never be used in an INSERT or UPDATE statement. If a primary key field is read-

only, the create method will throw a CreateException. If a set accessor is called for a read-only field, it
throws an EJBException. Read-only fields are useful for fields that are filled in by database triggers, such as
last update. A read-only cmp-field declaration example follows:

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>GangsterEJB</ejb-name>
<cmp-field>

<field-name>lastUpdated</field-name>
<read-only>true</read-only>
<read-time-out>1000</read-time-out>

</cmp-field>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

11.4.5. Auditing Entity Access

The audit element of the entity section allows one to specify how access to and entity bean is audited. This is
only allowed when an entity bean is accessed under a security domain so that this is a caller identity estab-
lished. The content model of the audit element is given Figure 11.3.

Figure 11.3. The jbosscmp-jdbc.xml audit element content model

• created-by: This optional element indicates that the caller who created the entity should be saved to either
the indicated column-name or cmp field-name.

• created-time: This optional element indicates that the time of entity creation should be saved to either the

The CMP Engine

379

indicated column-name or cmp field-name.

• updated-by: This optional element indicates that the caller who last modified the entity should be saved to
either the indicated column-name or CMP field-name.

• updated-time: This optional element indicates that the last time of entity modification should be saved to
either the indicated column-name or CMP field-name.

• */field-name: This element indicates that the corresponding audit information should be stored in the indic-
ated cmp-field of the accessed entity bean. Note that there does not have to be an actual CMP field match
in the entity. In case there are matching field names, you will be able to access audit fields in the application
using the corresponding CMP field abstract getters and setters. Otherwise, audit fields will be created and
added to entity internally, and you will be able to access audit information in EJB-QL queries using the
audit field names, but not directly through the entity accessors.

• */column-name: This element indicates that the corresponding audit information should be stored in the in-
dicated column of the entity table. If JBossCMP is creating the table the jdbc-type and sql-type element
can be used to define the storage type.

Example 11.9. A sample audit element declaration

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>AuditChangedNamesEJB</ejb-name>
<table-name>cmp2_audit_changednames</table-name>
<audit>

<created-by>
<column-name>createdby</column-name>

</created-by>
<created-time>
<column-name>createdtime</column-name>

</created-time>
<updated-by>
<column-name>updatedby</column-name></updated-by>

<updated-time>
<column-name>updatedtime</column-name>

</updated-time>
</audit>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

11.4.6. Dependent Value Classes (DVCs)

A Dependent Value Class (DVC) is a fancy term used to identity any Java class that is the type of a cmp-field,
other than the automatically recognized types. See the Enterprise JavaBeans Specification for further require-
ments. By default, a DVC is serialized, and the serialized form is stored in a single database column. Although
not discussed here, there are several known issues with the long-term storage of classes in serialized form.
JBossCMP supports the storage of the internal data of a DVC into one or more columns. This is useful for sup-
porting legacy JavaBeans and database structures. It is not uncommon to find a database with a highly flattened
structure (e.g., a PURCHASE_ORDER table with the fields SHIP_LINE1, SHIP_LINE2, SHIP_CITY, etc. and an addi-
tional set of fields for the billing address). Other common database structures include telephone numbers with
separate fields for area code, exchange, and extension, or a person's name spread across several fields. With a
DVC, multiple columns can be mapped to one logical JavaBean.

The CMP Engine

380

5The requirement that a DVC use the JavaBeans naming convention will be removed in a future release of JBossCMP.
6This restriction will also be removed in a future release. The current proposal is to allow the value to be retrieved from any no argument
method and to be set with any single argument method or with a constructor.

JBossCMP requires that a DVC to be mapped must follow the JavaBeans naming specification for simple prop-
erties, and that each property to be stored in the database must have both a getter and a setter method5. Further-
more, the bean must be serializable and must have a no argument constructor. A property can be any simple
type, an unmapped DVC or a mapped DVC, but cannot be an EJB6. A DVC mapping is specified within the
dependent-value-classes element.

Figure 11.4. The jbosscmp-jdbc dependent-value-classes element model.

Here is an example of a simple ContactInfo DVC class.

public class ContactInfo
implements Serializable

{
/** The cell phone number. */
private PhoneNumber cell;

/** The pager number. */
private PhoneNumber pager;

/** The email address */
private String email;

// ...
}

The contact info includes a phone number, which is represented by another DVC class.

public class PhoneNumber
implements Serializable

{
/** The first three digits of the phone number. */
private short areaCode;

The CMP Engine

381

/** The middle three digits of the phone number. */
private short exchange;

/** The last four digits of the phone number. */
private short extension;

// ...
}

The dependent-value-classes mapping for these two classes is relatively straight forward.

<jbosscmp-jdbc>
<dependent-value-classes>
<dependent-value-class>
<description>A phone number</description>
<class>org.jboss.cmp2.crimeportal.PhoneNumber</class>
<property>

<property-name>areaCode</property-name>
<column-name>area_code</column-name>

</property>
<property>

<property-name>exchange</property-name>
<column-name>exchange</column-name>

</property>
<property>

<property-name>extension</property-name>
<column-name>extension</column-name>

</property>
</dependent-value-class>

<dependent-value-class>
<description>General contact info</description>
<class>org.jboss.cmp2.crimeportal.ContactInfo</class>
<property>

<property-name>cell</property-name>
<column-name>cell</column-name>

</property>
<property>

<property-name>pager</property-name>
<column-name>pager</column-name>

</property>
<property>

<property-name>email</property-name>
<column-name>email</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(128)</sql-type>

</property>
</dependent-value-class>

</dependent-value-classes>
</jbosscmp-jdbc>

Each DVC is declared with a dependent-value-class element. A DVC is identified by the Java class type de-
clared in the class element. Each property to be persisted is declared with a property element. This specification
is based on the cmp-field element, so it should be self-explanatory. This restriction will also be removed in a
future release. The current proposal involves storing the primary key fields in the case of a local entity and the
entity handle in the case of a remote entity.

The dependent-value-classes section defines the internal structure and default mapping of the classes. When
JBossCMP encounters a field that has an unknown type, it searches the list of registered DVCs, and if a DVC is
found, it persists this field into a set of columns, otherwise the field is stored in serialized form in a single
column. JBossCMP does not support inheritance of DVCs; therefore, this search is only based on the declared
type of the field. A DVC can be constructed from other DVCs, so when JBossCMP runs into a DVC, it flattens
the DVC tree structure into a set of columns. If JBossCMP finds a DVC circuit during startup, it will throw an
EJBException. The default column name of a property is the column name of the base cmp-field followed by

The CMP Engine

382

an underscore and then the property column name. If the property is a DVC, the process is repeated. For ex-
ample, a cmp-field named info that uses the the ContactInfo DVC would have the following columns:

info_cell_area_code
info_cell_exchange
info_cell_extension
info_pager_area_code
info_pager_exchange
info_pager_extension
info_email

The automatically generated column names can quickly become excessively long and awkward. The default
mappings of columns can be overridden in the entity element as follows:

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>GangsterEJB</ejb-name>
<cmp-field>

<field-name>contactInfo</field-name>
<property>
<property-name>cell.areaCode</property-name>
<column-name>cell_area</column-name>

</property>
<property>
<property-name>cell.exchange</property-name>
<column-name>cell_exch</column-name>

</property>
<property>
<property-name>cell.extension</property-name>
<column-name>cell_ext</column-name>

</property>

<property>
<property-name>pager.areaCode</property-name>
<column-name>page_area</column-name>

</property>
<property>
<property-name>pager.exchange</property-name>
<column-name>page_exch</column-name>

</property>
<property>
<property-name>pager.extension</property-name>
<column-name>page_ext</column-name>

</property>

<property>
<property-name>email</property-name>
<column-name>email</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(128)</sql-type>

</property>
</cmp-field>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

When overriding property info for the entity, you need to refer to the property from a flat perspective as in
cell.areaCode.

11.5. Container Managed Relationships

Container Managed Relationships (CMRs) are a powerful new feature of CMP 2.0. Programmers have been
creating relationships between entity objects since EJB 1.0 was introduced (not to mention since the introduc-

The CMP Engine

383

7The EJB specification does not even allow for relationships between entities in different applications within the same VM

tion of databases), but before CMP 2.0 the programmer had to write a lot of code for each relationship in order
to extract the primary key of the related entity and store it in a pseudo foreign key field. The simplest relation-
ships were tedious to code, and complex relationships with referential integrity required many hours to code.
With CMP 2.0 there is no need to code relationships by hand. The container can manage one-to-one, one-
to-many and many-to-many relationships, with referential integrity. One restriction with CMRs is that they are
only defined between local interfaces. This means that a relationship cannot be created between two entities in
different virtual machines7.

There are two basic steps to create a container managed relationship: create the cmr-field abstract accessors
and declare the relationship in the ejb-jar.xml file. The following two sections describe these steps.

11.5.1. CMR-Field Abstract Accessors

CMR-Field abstract accessors have the same signatures as cmp-fields, except that single-valued relationships
must return the local interface of the related entity, and multi-valued relationships can only return a
java.util.Collection (or java.util.Set) object. As with cmp-fields, at least one of the two entities in a re-
lationship must have cmr-field abstract accessors. For example, to declare a one-to-many relationship between
Organization and Gangster, first add the following to the OrganizationBean class:

public abstract class OrganizationBean
implements EntityBean

{
public abstract Set getMemberGangsters();
public abstract void setMemberGangsters(Set gangsters);

}

Second, add the following to the GangsterBean class:

public abstract class GangsterBean
implements EntityBean

{
public abstract Organization getOrganization();
public abstract void setOrganization(Organization org);

}

Although each bean declared a cmr-field, only one of the two beans in a relationship must have a set of ac-
cessors. As with cmp-fields, a cmr-field is required to have both a getter and a setter method.

11.5.2. Relationship Declaration

The declaration of relationships in the ejb-jar.xml file is complicated and error prone. The XML used to de-
clare relationships is as inconsistent as Visual Basic syntax. The best way to configure a relationship is to use a
tool, such as XDoclet, or cut and paste a working relationship. The declaration of the Organization-Gangster

relationship follows:

Example 11.10. The ejb-jar.xml relationship Declaration

<ejb-jar>
<relationships>

<ejb-relation>
<ejb-relation-name>Organization-Gangster</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>org-has-gangsters </ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

The CMP Engine

384

8This is the first place where the specification is inconsistent. It would be much easier if the specification used the following tags: rela-
tionships, relationship, and relationship-name.

<ejb-name>OrganizationEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>memberGangsters</cmr-field-name>
<cmr-field-type>java.util.Set</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-belongs-to-org </ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>

<ejb-name>GangsterEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>organization</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</ejb-jar>

As you can see, each relationship is declared with an ejb-relation element within the top level relation-
ships

8 element, and each ejb-relation contains two ejb-relationship-role elements (one for each entity
in the relationship). The ejb-relationship-role tags are as follows:

• ejb-relationshiprole-name: This optional element is used to identify the role and match the database map-
ping the jbosscmp-jdbc.xml file. The name cannot be the same as the related role.

• multiplicity: This required element must be One or Many. Note, as with all XML elements, this element is
case sensitive.

• cascade-delete: When this optional element is present, JBossCMP will delete the child entity when the par-
ent entity is deleted. Cascade deletion is only allowed for a role where the other side of the relationship has
a multiplicity of one. The default is to not cascade delete.

• relationship-role-source/ejb-name: This required element gives the name of the entity that has the role.

• cmr-field/cmr-field-name: This is the name of the cmr-field of the entity has one, if entity has a cmrfield
abstract accessor.

• cmr-field/cmr-field-type: This is the type of the cmr-field. Must be java.util.Collection or java.util.Set .
Only required if cmr-field abstract accessor is collection valued

After adding the cmr-field abstract accessors and declaring the relationship, the relationship should be func-
tional. For more information on relationships, see section 10.3 of the EJB 2.0 specification. The next section
discusses the database mapping of the relationship.

11.5.3. Relationship Mapping

Relationships can be mapped using either a foreign key or a separate relation-table. One-to-one and one-
to-many relationships use the foreign key mapping style by default, and many-to-many relationships use only
the relation-table mapping style. The mapping of a relationship is declared in the relationships section of the
jbosscmp-jdbc.xml descriptor via ejb-relation elements. Relationships are identified by the ejb-re-

lation-name from the ejb-jar.xml file. The jbosscmp-jdbc.xml ejb-relation element content model is

The CMP Engine

385

shown in Figure 11.5.

Figure 11.5. The jbosscmp-jdbc.xml ejb-relation element content model

The basic template of the relationship mapping declaration for Organization-Gangster follows:

<jbosscmp-jdbc>
<relationships>

<ejb-relation>
<ejb-relation-name>Organization-Gangster</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>name</field-name>
<column-name>organization</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
<key-fields/>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

After the ejb-relation-name of the relationship being mapped is declared, the relationship can be declared as
read only using the read-only and read-time-out elements. They have the same semantics as their counter-
parts in the entity element.

The CMP Engine

386

9Note that with foreign key mapping this element can be empty; meaning that there will be not be a foreign key for the current entity. This
is required for the many side of a one-to-many relationship, such a Gangster in the Organization-Gangster example.

The ejb-relation element must contain either a foreign-key-mapping element or a relation-ta-

ble-mapping element, which are described in the foreign key mapping and relation-table mapping sections
respectively. This element may also contain a pair of ejb-relationship-role elements as described in the fol-
lowing section.

11.5.3.1. Relationship Role Mapping

Each of the two ejb-relationship-role elements contains mapping information specific to an entity in the re-
lationship, and the content model of the ejb-relationship-role element is shown in Figure 11.6 .

Figure 11.6. The jbosscmp-jdbc ejb-relationship-role element content model

A detailed description of the main elements follows:

• ejb-relationship-role-name: This required element gives the name of the role to which this configuration
applies. This element must match the name of one of the roles declared for this query in the ejb-jar.xml

file.

• fk-constraint: This optional element if true indicates that JBossCMP should add a foreign key constraint to
the tables. JBossCMP will only add the constraint if both the primary table and the related table were cre-
ated by JBossCMP during deployment.

• key-fields: This optional element specifies the mapping of the primary key fields of the current entity. This
element is only necessary if exact field mapping is desired. Otherwise, the key-fields element must9 contain
a key-field element for each primary key field of the current entity. The details of this element are described
below.

• read-ahead: This optional element controls the caching of this relationship. This option is discussed in Sec-
tion 11.8.3.1.

• batch-cascade-delete: When a relationship is marked as batch-delete in the ejb-jar.xml, the corres-
ponding relationship can be marked with batch-cascade-delete. In this case, the cascade delete will be
performed with a single SQL statement.

As noted above, the key-fields element contains a key-field for each primary key field of the current entity.
The key-field element uses the same syntax as the cmp-field element of the entity, except that key-field
does not support the not-null option. Key fields of a relation-table are automatically not null, because they
are the primary key of the table. On the other hand, foreign key fields must be nullable by default. This is be-
cause the current implementation of JBossCMP inserts a row into the database for a new entity between ejb-

Create and ejbPostCreate. Since the EJB specification does not allow a relationship to be modified until ejb-
PostCreate, a foreign key will be initially set to null. There is a similar problem with removal. You can change
this insert behavior using the jboss.xml insert-after-ejb-post-create container configuration flag. The
following example illustrates the use of insert-after-ejb-post-create.

The CMP Engine

387

<jboss>
<!-- ... -->
<container-configurations>
<container-configuration extends="Standard CMP 2.x EntityBean">

<container-name>INSERT after ejbPostCreate Container</container-name>
<insert-after-ejb-post-create>true</insert-after-ejb-post-create>

</container-configuration>
</container-configurations>

</jboss>

An alternate means of working around the non-null foreign key issue is to map the foreign key elements onto
non-null CMP fields. In this case you simply populate the foreign key fields in ejbCreate using the associated
CMP field setters.

The content model of the key-fields element is Figure 11.7.

Figure 11.7. The jbosscmp-jdbc key-fields element content model

A detailed description of the elements contained in the key-field element follows:

• field-name: This required element identifies the field to which this mapping applies. This name must match
a primary key field of the current entity.

• column-name: Use this element to specify the column name in which this primary key field will be stored.
If this is relationship uses foreign-key-mapping, this column will be added to the table for the related en-
tity. If this relationship uses relation-table-mapping, this column is added to the relation-table. This
element is not allowed for mapped dependent value class; instead use the property element.

• jdbc-type: This is the JDBC type that is used when setting parameters in a JDBC PreparedStatement or
loading data from a JDBC ResultSet. The valid types are defined in java.sql.Types.

• sql-type: This is the SQL type that is used in create table statements for this field. Valid types are only lim-

The CMP Engine

388

ited by your database vendor.

• property: Use this element for to specify the mapping of a primary key field which is a dependent value
class.

• dbindex: The presence of this optional field indicates that the server should create an index on the corres-
ponding column in the database, and the index name will be fieldname_index.

11.5.3.2. Foreign Key Mapping

Foreign key mapping is the most common mapping style for one-to-one and one-to-many relationships, but is
not allowed for many-to many relationships. The foreign key mapping element is simply declared by adding an
empty foreign key-mapping element to the ejb-relation element.

As noted in the previous section, with a foreign key mapping the key-fields declared in the ejb-

relationship-role are added to the table of the related entity. If the key-fields element is empty, a foreign
key will not be created for the entity. In a one-to-many relationship, the many side (Gangster in the example)
must have an empty key-fields element, and the one side (Organization in the example) must have a key-

fields mapping. In one-to-one relationships, one or both roles can have foreign keys.

The foreign key mapping is not dependent on the direction of the relationship. This means that in a one-to-one
unidirectional relationship (only one side has an accessor) one or both roles can still have foreign keys. The
complete foreign key mapping for the Organization-Gangster relationship is shown below with the foreign
key elements highlighted in bold:

<jbosscmp-jdbc>
<relationships>

<ejb-relation>
<ejb-relation-name>Organization-Gangster</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

<ejb-relationship-role-name>org-has-gangsters</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>name</field-name>
<column-name>organization</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-belongs-to-org</ejb-relationship-role-name>
<key-fields/>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

11.5.3.3. Relation-table Mapping

Relation table mapping is less common for one-to-one and one-to-many relationships, but is the only mapping
style allowed for many-to-many relationships. Relation table mapping is defined using the relation-ta-

ble-mapping element, the content model of which is shown below.

The CMP Engine

389

Figure 11.8. The jbosscmp-jdbc relation-table-mapping element content model

The relation-table-mapping for the Gangster-Job relationship is shown in with table mapping elements high-
lighted in bold:

Example 11.11. The jbosscmp-jdbc.xml Relation-table Mapping

<jbosscmp-jdbc>
<relationships>

<ejb-relation>
<ejb-relation-name>Gangster-Jobs</ejb-relation-name>
<relation-table-mapping>

<table-name>gangster_job</table-name>
</relation-table-mapping>
<ejb-relationship-role>

<ejb-relationship-role-name>gangster-has-jobs</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>gangsterId</field-name>
<column-name>gangster</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>job-has-gangsters</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>name</field-name>
<column-name>job</column-name>

</key-field>
</key-fields>

The CMP Engine

390

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

The relation-table-mapping element contains a subset of the options available in the entity element. A de-
tailed description of these elements is reproduced here for convenience:

• table-name: This optional element gives the name of the table that will hold data for this relationship. The
default is based on the entity and cmr-field names.

• datasource: This optional element gives the jndi-name used to look up the datasource. All database con-
nections are obtained from the datasource. Having different datasources for entities is not recommended, as
it vastly constrains the domain over which finders and ejbSelects can query.

• datasourcemapping: This optional element allows one to specify the name of the type-mapping to use.

• create-table: This optional element if true indicates JBossCMP should attempt to create a table for the rela-
tionship. When the application is deployed, JBossCMP checks if a table already exists before creating the
table. If a table is found, it is logged, and the table is not created. This option is very useful during the early
stages of development when the table structure changes often.

• post-table-create: This optional element specifies an arbitrary SQL statement that should be executed im-
mediately after the database table is created. This command is only executed if create-table is true and
the table did not previously exist.

• remove-table: This optional element if true indicates JBossCMP should attempt to drop the relation-ta-

ble when the application is undeployed. This option is very useful during the early stages of development
when the table structure changes often.

• row-locking: This optional element if true indicates JBossCMP should lock all rows loaded in a transac-
tion. Most databases implement this by using the SELECT FOR UPDATE syntax when loading the entity, but
the actual syntax is determined by the row-locking-template in the datasource-mapping used by this en-
tity.

• pk-constraint: This optional element if true indicates JBossCMP should add a primary key constraint when
creating tables.

11.6. Queries

Another powerful new feature of CMP 2.0 is the introduction of the EJB Query Language (EJB-QL) and
ejbSelect methods. In CMP 1.1, every EJB container had a different way to specify finders, and this was a
serious threat to J2EE portability. In CMP 2.0, EJB-QL was created to specify finders and ejbSelect methods
in a platform independent way. The ejbSelect method is designed to provide private query statements to an
entity implementation. Unlike finders, which are restricted to only return entities of the same type as the home
interface on which they are defined, ejbSelect methods can return any entity type or just one field of the en-
tity.

EJB-QL is beyond the scope of this documentation, so only the basic method coding and query declaration will
be covered here. For more information, see the Enterprise JavaBeans Specification.

The CMP Engine

391

10Ignore the ejbql suffix; it is not required. Later this query will be implemented using JBossQL and declared SQL, and the suffix is used
to separate the different query specifications in the jbosscmp-jdbc.xml file.

11.6.1. Finder and ejbSelect Declaration

The declaration of finders has not changed in CMP 2.0. Finders are still declared in the home interface (local or
remote) of the entity. Finders defined on the local home interface do not throw a RemoteException. The follow-
ing code declares the findBadDudes_ejbql

10 finder on the GangsterHome interface:

Example 11.12. Finder Declaration

public interface GangsterHome
extends EJBLocalHome

{
Collection findBadDudes_ejbql(int badness) throws FinderException;

}

The ejbSelect methods are declared in the entity implementation class, and must be public abstract just like
cmp-field and cmr-field abstract accessors. Select methods must be declared to throw a FinderException, but
not a RemoteException. The following code declares an ejbSelect method:

Example 11.13. ejbSelect Declaration

public abstract class GangsterBean
implements EntityBean

{
public abstract Set ejbSelectBoss_ejbql(String name)

throws FinderException;
}

11.6.2. EJB-QL Declaration

The EJB 2.0 specification requires that every ejbSelect or finder method (except findByPrimaryKey) have an
EJB-QL query defined in the ejb-jar.xml file. The EJB-QL query is declared in a query element, which is
contained in the entity element. The following are the declarations for findBadDudes_ejbql and ejbSelect-

Boss_ejbql queries.

<ejb-jar>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<query>

<query-method>
<method-name>findBadDudes_ejbql</method-name>
<method-params>

<method-param>int</method-param>
</method-params>

</query-method>
<ejb-ql><![CDATA[
SELECT OBJECT(g)
FROM gangster g
WHERE g.badness > ?1
]]></ejb-ql>

</query>
<query>

<query-method>
<method-name>ejbSelectBoss_ejbql</method-name>

The CMP Engine

392

11The example "(r.amountPaid * .01) > 300" is presented on page 244 of "Enterprise JavaBeans 3rd Edition" by Richard Monson-Haefel to
demonstrate the use of arithmetic operators in a WHERE clause, and is included here to highlight the fact that it is not legal EJB-QL syntax

<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql><![CDATA[
SELECT DISTINCT underling.organization.theBoss
FROM gangster underling
WHERE underling.name = ?1 OR underling.nickName = ?1
]]></ejb-ql>

</query>
</entity>

</enterprise-beans>
</ejb-jar>

EJB-QL is similar to SQL but has some surprising differences. The following are some important things to note
about EJB-QL:

• EJB-QL is a typed language, meaning that it only allows comparison of like types (i.e., strings can only be
compared with strings).

• In an equals comparison a variable (single valued path) must be on the left hand side. Some examples fol-
low11:

g.hangout.state = 'CA' Legal
'CA' = g.shippingAddress.state NOT Legal
'CA' = 'CA' NOT Legal
(r.amountPaid * .01) > 300 NOT Legal
r.amountPaid > (300 / .01) Legal

• Parameters use a base 1 index like java.sql.PreparedStatement.

• Parameters are only allowed on the right hand side of a comparison. For example:

gangster.hangout.state = ?1 Legal
?1 = gangster.hangout.state NOT Legal

11.6.3. Overriding the EJB-QL to SQL Mapping

The EJB-QL to SQL mapping can be overridden in the jbosscmp-jdbc.xml file. The finder or ejbSelect is
still required to have an EJB-QL declaration in the ejb-jar.xml file, but the ejb-ql element can be left empty.
Currently the SQL can be overridden with JBossQL, DynamicQL, DeclaredSQL or a BMP style custom
ejbFind method. All EJB-QL overrides are non-standard extensions to the EJB 2.0 specification, so use of
these extensions will limit portability of your application. All of the EJB-QL overrides, except for BMP custom
finders, are declared using the entity/query element, and the content model is shown in Figure 11.9.

The CMP Engine

393

Figure 11.9. The jbosscmp-jdbc query element content model

• description: An optional description for the query.

• query-method: This required element specifies the query method that being configured. This must match a
query-method declared for this entity in the ejb-jar.xml file.

• jboss-ql, dynamic-ql, declared-sql: These elements are alternate ways to specify the query method and
each is discussed in its own section.

• read-ahead: This optional element allows one to optimize the loading of additional fields for use with the
entities referenced by the query. This is discussed in detail in Section 11.7.

11.6.4. JBossQL

JBossQL is a superset of EJB-QL that is designed to address some of the inadequacies of EJB-QL. In addition
to a more flexible syntax, new functions, key words, and clauses have been added to JBossQL. At the time of
this writing, JBossQL includes support for an ORDER BY, OFFSET and LIMIT clauses, parameters in the IN and
LIKE operators, the COUNT, MAX, MIN, AVG, SUM, UCASE and LCASE functions, and queries can also include func-
tions in the SELECT clause for ejbSelect methods.

JBossQL is declared in the jbosscmp-jdbc.xml file with a query/jboss-ql element containing the JBossQL
query. The following example provides an example JBossQL declaration.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>findBadDudes_jbossql</method-name>

The CMP Engine

394

<method-params>
<method-param>int</method-param>

</method-params>
</query-method>
<jboss-ql><![CDATA[
SELECT OBJECT(g)
FROM gangster g
WHERE g.badness > ?1
ORDER BY g.badness DESC
]]></jboss-ql>

</query>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

The corresponding generated SQL is straightforward.

SELECT t0_g.id
FROM gangster t0_g
WHERE t0_g.badness > ?
ORDER BY t0_g.badness DESC

Another capability of JBossQL is the ability to retrieve finder results in blocks using the LIMIT and OFFSET
functions. For example, to iterate through the large number of jobs performed, the following findMany-

Jobs_jbossql finder may be defined.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>findManyJobs_jbossql</method-name>
<method-params>

<method-param>int</method-param>
</method-params>
<method-params>

<method-param>int</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[
SELECT OBJECT(j)
FROM jobs j
OFFSET ?1 LIMIT ?2
]]></jboss-ql>

</query>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

11.6.5. DynamicQL

DynamicQL allows the runtime generation and execution of JBossQL queries. A DynamicQL query method is
an abstract method that takes a JBossQL query and the query arguments as parameters. JBossCMP compiles
the JBossQL and executes the generated SQL. The following generates a JBossQL query that selects all the
gangsters that have a hangout in any state in the states set:

public abstract class GangsterBean
implements EntityBean

{
public Set ejbHomeSelectInStates(Set states)

throws FinderException
{

// generate JBossQL query

The CMP Engine

395

StringBuffer jbossQl = new StringBuffer();
jbossQl.append("SELECT OBJECT(g) ");
jbossQl.append("FROM gangster g ");
jbossQl.append("WHERE g.hangout.state IN (");
for(int i = 0; i < states.size(); i++) {

if(i > 0) {
jbossQl.append(", ");

}

jbossQl.append("?").append(i+1);
}

jbossQl.append(") ORDER BY g.name");

// pack arguments into an Object[]
Object[] args = states.toArray(new Object[states.size()]);

// call dynamic-ql query
return ejbSelectGeneric(jbossQl.toString(), args);

}
}

The DynamicQL ejbSelect method may have any valid ejbSelect method name, but the method must always
take a String and Object array as parameters. DynamicQL is declared in the jbosscmp-jdbc.xml file with an
empty query/dynamic-ql element. The following is the declaration for ejbSelectGeneric.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>ejbSelectGeneric</method-name>
<method-params>

<method-param>java.lang.String</method-param>
<method-param>java.lang.Object[]</method-param>

</method-params>
</query-method>
<dynamic-ql/>

</query>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

11.6.6. DeclaredSQL

DeclaredSQL is based on the legacy JAWS CMP 1.1 engine finder declaration, but has been updated for CMP
2.0. Commonly this declaration is used to limit a query with a WHERE clause that cannot be represented in EJB-
QL or JBossQL. The content model for the declared-sql element is given in Figure 11.10.

The CMP Engine

396

Figure 11.10. The jbosscmp-jdbc declared-sql element content model.>

• select: Specifies what is to be selected and consists of the following elements:

• distinct: If this empty element is present, JBossCMP will add the DISTINCT keyword to the generated
SELECT clause. The default is to use DISTINCT if method returns a java.util.Set

• ejb-name: This is the ejb-name of the entity that will be selected. Only required if the query is for an
ejbSelect method.

• field-name: This is the name of the cmp-field that will be selected from the specified entity. The de-
fault is to select entire entity.

• alias: This specifies the alias that will be used for the main select table. The default is to use the ejb-

name.

• additional-columns: Declares other columns to be selected to satisfy ordering by arbitrary columns
with finders or to facilitate aggregate functions in selects.

• from: Declares additional SQL to append to the generated from clause.

• where: Declares the where clause for the query.

• order: Declares the order clause for the query.

• other: Declares additional SQL that is appended to the end of a query.

The following is an example DeclaredSQL declaration.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>findBadDudes_declaredsql</method-name>

The CMP Engine

397

<method-params>
<method-param>int</method-param>

</method-params>
</query-method>
<declared-sql>

<where><![CDATA[badness > {0}]]></where>
<order><![CDATA[badness DESC]]></order>

</declared-sql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The generated SQL would be:

SELECT id
FROM gangster
WHERE badness > ?
ORDER BY badness DESC

As you can see, JBossCMP generates the SELECT and FROM clauses necessary to select the primary key for
this entity. If desired an additional FROM clause can be specified that is appended to the end of the automatic-
ally generated FROM clause. The following is example DeclaredSQL declaration with an additional FROM
clause.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<query>

<query-method>
<method-name>ejbSelectBoss_declaredsql</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<declared-sql>

<select>
<distinct/>
<ejb-name>GangsterEJB</ejb-name>
<alias>boss</alias>

</select>
<from><![CDATA[, gangster g, organization o]]></from>
<where><![CDATA[
(LCASE(g.name) = {0} OR LCASE(g.nick_name) = {0}) AND
g.organization = o.name AND o.the_boss = boss.id
]]></where>

</declared-sql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The generated SQL would be:

SELECT DISTINCT boss.id
FROM gangster boss, gangster g, organization o
WHERE (LCASE(g.name) = ? OR LCASE(g.nick_name) = ?) AND

g.organization = o.name AND o.the_boss = boss.id

Notice that the FROM clause starts with a comma. This is because the container appends the declared FROM clause
to the end of the generated FROM clause. It is also possible for the FROM clause to start with a SQL JOIN state-
ment. Since this is an ejbSelect method, it must have a select element to declare the entity that will be selec-
ted. Note that an alias is also declared for the query. If an alias is not declared, the table-name is used as the

The CMP Engine

398

alias, resulting in a SELECT clause with the table_name.field_name style column declarations. Not all database
vendors support the that syntax, so the declaration of an alias is preferred. The optional empty distinct ele-
ment causes the SELECT clause to use the SELECT DISTINCT declaration. The DeclaredSQL declaration can also
be used in ejbSelect methods to select a cmp-field.

Now we well see an example which overrides an ejbSelct to select all of the zip codes in which an Organiza-

tion operates.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>OrganizationEJB</ejb-name>
<query>

<query-method>
<method-name>ejbSelectOperatingZipCodes_declaredsql</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<declared-sql>

<select>
<distinct/>
<ejb-name>LocationEJB</ejb-name>
<field-name>zipCode</field-name>
<alias>hangout</alias>

</select>
<from><![CDATA[, organization o, gangster g]]></from>
<where><![CDATA[
LCASE(o.name) = {0} AND o.name = g.organization AND
g.hangout = hangout.id
]]></where>
<order><![CDATA[hangout.zip]]></order>

</declared-sql>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The corresponding SQL would be:

SELECT DISTINCT hangout.zip
FROM location hangout, organization o, gangster g
WHERE LCASE(o.name) = ? AND o.name = g.organization AND g.hangout = hangout.id

ORDER BY hangout.zip

11.6.6.1. Parameters

JBossCMP DeclaredSQL uses a completely new parameter handling system, which supports entity and DVC
parameters. Parameters are enclosed in curly brackets and use a base zero index, which is different from the
base one EJB-QL parameters. There are three categories of parameters: simple, DVC, and entity:

• simple: A simple parameter can be of any type except for a known (mapped) DVC or an entity. A simple
parameter only contains the argument number, such as {0}. When a simple parameter is set, the JDBC type
used to set the parameter is determined by the datasourcemapping for the entity. An unknown DVC is seri-
alized and then set as a parameter. Note that most databases do not support the use of a BLOB value in a
WHERE clause.

• DVC: A DVC parameter can be any known (mapped) DVC. A DVC parameter must be dereferenced down
to a simple property (one that is not another DVC). For example, if we had a CVS property of type Con-

tactInfo, valid parameter declarations would be {0.email} and {0.cell.areaCode} but not {0.cell}.
The JDBC type used to set a parameter is based on the class type of the property and the datasourcemap-

The CMP Engine

399

ping of the entity. The JDBC type used to set the parameter is the JDBC type that is declared for that prop-
erty in the dependent-value-class element.

• entity: An entity parameter can be any entity in the application. An entity parameter must be dereferenced
down to a simple primary key field or simple property of a DVC primary key field. For example, if we had
a parameter of type Gangster, a valid parameter declaration would be {0.gangsterId}. If we had some en-
tity with a primary key field named info of type ContactInfo, a valid parameter declaration would be
{0.info.cell.areaCode}. Only fields that are members of the primary key of the entity can be derefer-
enced (this restriction may be removed in later versions). The JDBC type used to set the parameter is the
JDBC type that is declared for that field in the entitydeclaration.

11.6.7. EJBQL 2.1 and SQL92 queries

The default query compiler doesn't dully support EJB-QL 2.1 or the SQL92 standard. If you need either of
these functions, you can replace the query compiler. The default compiler is specified in standardjbosscmp-jd-

bc.xml.

<defaults>
...
<ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.JDBCEJBQLCompiler</ql-compiler>
...

</defaults>

To use the SQL92 compiler, simply specifyt the SQL92 compiler in ql-compiler element.

<defaults>
...
<ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.EJBQLToSQL92Compiler</ql-compiler>
...

</defaults>

This changes the query compiler for all beans in the entire system. You can also specify the ql-compiler for
each element in jbosscmp-jdbc.xml. Here is an example using one of our earlier queries.

<query>
<query-method>

<method-name>findBadDudes_ejbql</method-name>
<method-params>

lt;method-param>int</method-param>
</method-params>

</query-method>
<ejb-ql><![CDATA[

SELECT OBJECT(g)
FROM gangster g
WHERE g.badness > ?1]]>

</ejb-ql>
<ql-compiler>org.jboss.ejb.plugins.cmp.jdbc.EJBQLToSQL92Compiler</ql-compiler>

</query>

One important limitation of SQL92 query compiler is that it always selects all the fields of an entity regardless
the read-ahead strategy in use. For example, if a query is configured with the on-load read-ahead strategy,
the first query will include all the fields, not just primary key fields but only the primary key fields will be read
from the ResultSet. Then, on load, other fields will be actually loaded into the read-ahead cache. The on-find

read-ahead with the default load group * works as expected.

11.6.8. BMP Custom Finders

The CMP Engine

400

12This is a very useful finder because it quickly coverts primary keys into real Entity objects without contacting the database. One draw-
back is that it can create an Entity object with a primary key that does not exist in the database. If any method is invoked on the bad Entity,
a NoSuchEntityException will be thrown. Another drawback is that the resulting entity bean violates the EJB specification in that it imple-
ments a finder, and the JBoss EJB verifier will fail the deployment of such an entity unless the StrictVerifier attribute is set to false.

JBossCMP continues the tradition of JAWS in supporting bean managed persistence custom finders. If a cus-
tom finder matches a finder declared in the home or local home interface, JBossCMP will always call the cus-
tom finder over any other implementation declared in the ejb-jar.xml or jbosscmp-jdbc.xml files. The following
simple example finds the entities by a collection of primary keys12:

Example 11.14. Custom Finder Example Code

public abstract class GangsterBean
implements EntityBean

{
public Collection ejbFindByPrimaryKeys(Collection keys)
{

return keys;
}

}

11.7. Optimized Loading

The goal of optimized loading is to load the smallest amount of data required to complete a transaction in the
least number of queries. The tuning of JBossCMP depends on a detailed knowledge of the loading process.
This section describes the internals of the JBossCMP loading process and its configuration. Tuning of the load-
ing process really requires a holistic understanding of the loading system, so this chapter may have to be read
more than once.

11.7.1. Loading Scenario

The easiest way to investigate the loading process is to look at a usage scenario. The most common scenario is
to locate a collection of entities and iterate over the results performing some operation. The following example
generates an html table containing all of the gangsters:

Example 11.15. Loading Scenario Example Code

public String createGangsterHtmlTable_none()
throws FinderException

{
StringBuffer table = new StringBuffer();
table.append("<table>");

Collection gangsters = gangsterHome.findAll_none();
for(Iterator iter = gangsters.iterator(); iter.hasNext();) {

Gangster gangster = (Gangster)iter.next();
table.append("<tr>");
table.append("<td>").append(gangster.getName());
table.append("</td>");
table.append("<td>").append(gangster.getNickName());
table.append("</td>");
table.append("<td>").append(gangster.getBadness());

The CMP Engine

401

13The reason for this behavior has to do with the handling of query results inside the JBoss container. Although it appears that the actual
entity beans selected are returned when a query is executed, JBoss really only returns the primary keys of the matching entities, and does
not load the entity until a method is invoked on it.
14Normally JBossCMP would also load the contactInfo field, but for the sake of readability, it has been disabled in this example because
contact info maps to seven columns. The actual configuration used to disable the default loading of the contactInfo field is presented in
Listing 6-12.

table.append("</td>");
table.append("</tr>");

}

return table.toString();
}

Assume this code is called within a single transaction and all optimized loading has been disabled. At line 5,
JBossCMP will execute the following query:

Example 11.16. Unoptimized findAll Query

SELECT t0_g.id
FROM gangster t0_g
ORDER BY t0_g.id ASC

Then at line 8, in order to load the eight Gangsters in the sample database, JBossCMP executes the following
eight queries:

Example 11.17. Unoptimized Load Queries

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=0)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=1)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=2)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=3)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=4)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=5)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=6)

SELECT name, nick_name, badness, hangout, organization
FROM gangster WHERE (id=7)

There are two problems with this scenario. First, an excessive number of queries are executed because
JBossCMP executes one query for findAll and one query for each element found. This is known as the "n+1"
problem13 and is addressed with the read-ahead strategies described in the following sections. Second, values
of unused fields are loaded because JBossCMP loads the hangout and organization fields14, which are never
accessed. Configuration of eager loading is described in Section 11.8.2. The following table shows the execu-
tion of the queries:

Table 11.1. Unoptimized Query Execution

The CMP Engine

402

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

11.7.2. Load Groups

The configuration and optimization of the loading system begins with the declaration of named load groups in
the entity. A load group contains the names of cmp-fields and cmr-fields with a foreign key (e.g., Gangster
in the Organization-Gangster example) that will be loaded in a single operation. An example configuration is
shown below:

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<load-groups>

<load-group>
<load-group-name>basic</load-group-name>
<field-name>name</field-name>
<field-name>nickName</field-name>
<field-name>badness</field-name>

</load-group>
<load-group>

<load-group-name>contact info</load-group-name>
<field-name>nickName</field-name>
<field-name>contactInfo</field-name>
<field-name>hangout</field-name>

</load-group>
</load-groups>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

In this example, two load groups are declared: basic and contact info. Note that the load groups do not need to
be mutually exclusive. For example, both of the load groups contain the nickName field. In addition to the de-
clared load groups, JBossCMP automatically adds a group named * (the star group) that contains every cmp-

field and cmr-field with a foreign key in the entity.

11.7.3. Read-ahead

Optimized loading in JBossCMP is called read-ahead. This term was inherited from JAWS, and refer to the
technique of reading the row for an entity being loaded, as well as the next several rows; hence the term read-
ahead. JBossCMP implements two main strategies (on-find and on-load) to optimize the loading problem
identified in the previous section. The extra data loaded during read-ahead is not immediately associated with

The CMP Engine

403

15JBossCMP uses soft references in the read-ahead cache implementation, so data will be cached and then immediately released.

an entity object in memory, as entities are not materialized in JBoss until actually accessed. Instead, it is stored
in the preload cache where it remains until it is loaded into an entity or the end of the transaction occurs. The
following sections describe the read-ahead strategies.

11.7.3.1. on-find

The on-find strategy reads additional columns when the query is invoked. If the query in the scenario detailed
Example 11.15 is on-find optimized, JBossCMP will execute the following query at line 5:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
ORDER BY t0_g.id ASC

Then at line 8, all of the required data would be in the preload cache, so no additional queries would be ex-
ecuted. This strategy is effective for queries that return a small amount of data, but becomes very inefficient
when trying to load a large result set into memory15. The following table shows the execution of this query:

Table 11.2. on-find Optimized Query Execution

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

7 Corleone Godfather 6 7 Mafia

The read-ahead strategy and load-group for a query is defined in the query element. If a read-ahead strategy
is not declared in the query element, the strategy declared in the entity element or defaults element is used.
The on-find configuration follows:

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!--...-->
<query>

<query-method>
<method-name>findAll_onfind</method-name>
<method-params/>

</query-method>
<jboss-ql><![CDATA[
SELECT OBJECT(g)
FROM gangster g
ORDER BY g.gangsterId
]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>

The CMP Engine

404

</read-ahead>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

One problem with the on-find strategy is that it must load additional data for every entity selected. Commonly
in web applications only a fixed number of results are rendered on a page. Since the preloaded data is only val-
id for the length of the transaction, and a transaction is limited to a single web HTTP hit, most of the preloaded
data is not used. The on-load strategy discussed in the next section does not suffer from this problem.

11.7.3.1.1. Left join read ahead

Left join read ahead is an enhanced on-find read-ahead strategy. It allows you to preload in one SQL query
not only fields from the base instance but also related instances which can be reached from the base instance by
CMR navigation. There are no limitation for the depth of CMR navigations. There are also no limitations for
cardinality of CMR fields used in navigation and relationship type mapping, i.e. both foreign key and relation-ta-
ble mapping styles are supported. Let's look at some examples. Entity and relationship declarations can be
found below.

11.7.3.1.2. D#findByPrimaryKey

Suppose we have an entity D. A typical SQL query generated for the findByPrimaryKey would look like this:

SELECT t0_D.id, t0_D.name FROM D t0_D WHERE t0_D.id=?

Suppose that while executing findByPrimaryKey we also want to preload two collection-valued CMR fields bs
and cs.

<query>
<query-method>

<method-name>findByPrimaryKey</method-name>
<method-params>

<method-param>java.lang.Long</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(o) FROM D AS o WHERE o.id = ?1]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>
<left-join cmr-field="bs" eager-load-group="basic"/>
<left-join cmr-field="cs" eager-load-group="basic"/>

</read-ahead>
</query>

The left-join declares the relations to be eager loaded. The generated SQL would look like this:

SELECT t0_D.id, t0_D.name,
t1_D_bs.id, t1_D_bs.name,
t2_D_cs.id, t2_D_cs.name

FROM D t0_D
LEFT OUTER JOIN B t1_D_bs ON t0_D.id=t1_D_bs.D_FK
LEFT OUTER JOIN C t2_D_cs ON t0_D.id=t2_D_cs.D_FK

WHERE t0_D.id=?

For the D with the specific id we preload all its related B's and C's and can access those instance loading them
from the read ahead cache, not from the database.

The CMP Engine

405

11.7.3.1.3. D#findAll

In the same way, we could optimize the findAll method on D selects all the D's. A normal findAll query would
look like this:

SELECT DISTINCT t0_o.id, t0_o.name FROM D t0_o ORDER BY t0_o.id DESC

To preload the relations, we simply need to add the left-join elements to the query.

<query>
<query-method>

<method-name>findAll</method-name>
</query-method>
<jboss-ql><![CDATA[SELECT DISTINCT OBJECT(o) FROM D AS o ORDER BY o.id DESC]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>
<left-join cmr-field="bs" eager-load-group="basic"/>
<left-join cmr-field="cs" eager-load-group="basic"/>

</read-ahead>
</query>

And here is the generated SQL:

SELECT DISTINCT t0_o.id, t0_o.name,
t1_o_bs.id, t1_o_bs.name,
t2_o_cs.id, t2_o_cs.name

FROM D t0_o
LEFT OUTER JOIN B t1_o_bs ON t0_o.id=t1_o_bs.D_FK
LEFT OUTER JOIN C t2_o_cs ON t0_o.id=t2_o_cs.D_FK

ORDER BY t0_o.id DESC

Now the simple findAll query now preloads the related B and C objects for each D object.

11.7.3.1.4. A#findAll

Now let's look at a more complex configuration. Here we want to preload instance A along with several rela-
tions.

• its parent (self-relation) reached from A with CMR field parent

• the B reached from A with CMR field b, and the related C reached from B with CMR field c

• B reached from A but this time with CMR field b2 and related to it C reached from B with CMR field c.

For reference, the standard query would be:

SELECT t0_o.id, t0_o.name FROM A t0_o ORDER BY t0_o.id DESC FOR UPDATE

The following metadata describes our preloading plan.

<query>
<query-method>

<method-name>findAll</method-name>
</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(o) FROM A AS o ORDER BY o.id DESC]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>

The CMP Engine

406

<eager-load-group>basic</eager-load-group>
<left-join cmr-field="parent" eager-load-group="basic"/>
<left-join cmr-field="b" eager-load-group="basic">

<left-join cmr-field="c" eager-load-group="basic"/>
</left-join>
<left-join cmr-field="b2" eager-load-group="basic">

<left-join cmr-field="c" eager-load-group="basic"/>
</left-join>

</read-ahead>
</query>

The SQL query generated would be:

SELECT t0_o.id, t0_o.name,
t1_o_parent.id, t1_o_parent.name,
t2_o_b.id, t2_o_b.name,
t3_o_b_c.id, t3_o_b_c.name,
t4_o_b2.id, t4_o_b2.name,
t5_o_b2_c.id, t5_o_b2_c.name

FROM A t0_o
LEFT OUTER JOIN A t1_o_parent ON t0_o.PARENT=t1_o_parent.id
LEFT OUTER JOIN B t2_o_b ON t0_o.B_FK=t2_o_b.id
LEFT OUTER JOIN C t3_o_b_c ON t2_o_b.C_FK=t3_o_b_c.id
LEFT OUTER JOIN B t4_o_b2 ON t0_o.B2_FK=t4_o_b2.id
LEFT OUTER JOIN C t5_o_b2_c ON t4_o_b2.C_FK=t5_o_b2_c.id

ORDER BY t0_o.id DESC FOR UPDATE

With this configuration, you can navigate CMRs from any found instance of A without an additional database
load.

11.7.3.1.5. A#findMeParentGrandParent

Here is some more example of self-relation. Suppose, we want to write a method that would preload an in-
stance, its parent, grand-parent and its grand-grand-parent in one query. To do this, we would used nested
left-join declaration.

<query>
<query-method>

<method-name>findMeParentGrandParent</method-name>
<method-params>

<method-param>java.lang.Long</method-param>
</method-params>

</query-method>
<jboss-ql><![CDATA[SELECT OBJECT(o) FROM A AS o WHERE o.id = ?1]]></jboss-ql>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>*</eager-load-group>
<left-join cmr-field="parent" eager-load-group="basic">

<left-join cmr-field="parent" eager-load-group="basic">
<left-join cmr-field="parent" eager-load-group="basic"/>

</left-join>
</left-join>

</read-ahead>
</query>

The generated SQL would be:

SELECT t0_o.id, t0_o.name, t0_o.secondName, t0_o.B_FK, t0_o.B2_FK, t0_o.PARENT,
t1_o_parent.id, t1_o_parent.name,
t2_o_parent_parent.id, t2_o_parent_parent.name,
t3_o_parent_parent_parent.id, t3_o_parent_parent_parent.name

FROM A t0_o
LEFT OUTER JOIN A t1_o_parent ON t0_o.PARENT=t1_o_parent.id
LEFT OUTER JOIN A t2_o_parent_parent ON t1_o_parent.PARENT=t2_o_parent_parent.id

The CMP Engine

407

LEFT OUTER JOIN A t3_o_parent_parent_parent ON t2_o_parent_parent.PARENT=t3_o_parent_parent_parent.id
WHERE (t0_o.id = ?) FOR UPDATE

Note, if we remove left-join metadata we will have only

SELECT t0_o.id, t0_o.name, t0_o.secondName, t0_o.B2_FK, t0_o.PARENT FOR UPDATE

11.7.3.2. on-load

The on-load strategy block-loads additional data for several entities when an entity is loaded, starting with the
requested entity and the next several entities in the order they were selected. This strategy is based on the the-
ory that the results of a find or select will be accessed in forward order. When a query is executed, JBossCMP
stores the order of the entities found in the list cache. Later, when one of the entities is loaded, JBossCMP uses
this list to determine the block of entities to load. The number of lists stored in the cache is specified with the
list-cachemax element of the entity. This strategy is also used when faulting in data not loaded in the on-find

strategy. With this strategy, the query executed at line 5 of Example 11.15 remains unchanged.

Example 11.18. on-load (Unoptimized) findAll Query

SELECT t0_g.id
FROM gangster t0_g
ORDER BY t0_g.id ASC

If, for example, the on-load/page-size is set to four, JBossCMP will execute the following two queries to
load the name, nickName and badness fields for the entities:

Example 11.19. on-load Optimized Load Queries

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=4) OR (id=5) OR (id=6) OR (id=7)

The following table shows the execution of these queries:

Table 11.3. on-load Optimized Query Execution

id name nick_name badness hangout organization

0 Yojimbo Bodyguard 7 0 Yakuza

1 Takeshi Master 10 1 Yakuza

2 Yuriko Four finger 4 2 Yakuza

3 Chow Killer 9 3 Triads

4 Shogi Lightning 8 4 Triads

5 Valentino Pizza-Face 4 5 Mafia

6 Toni Toothless 2 6 Mafia

The CMP Engine

408

id name nick_name badness hangout organization

7 Corleone Godfather 6 7 Mafia

As with the on-find strategy, on-load is declared in the read-ahead element. The on-load configuration for
this example is shown below.

Example 11.20. The jbosscmp-jdbc.xml on-load Declaration

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<query>

<query-method>
<method-name>findAll_onload</method-name>
<method-params/>

</query-method>
<jboss-ql><![CDATA[

SELECT OBJECT(g)
FROM gangster g
ORDER BY g.gangsterId
]]></jboss-ql>

<read-ahead>
<strategy>on-load</strategy>
<page-size>4</page-size>
<eager-load-group>basic</eager-load-group>

</read-ahead>
</query>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

11.7.3.3. none

The none strategy is really an anti-strategy. This strategy causes the system to fall back to the default lazy-load
code, and specifically does not read-ahead any data or remember the order of the found entities. This results in
the queries and performance shown at the beginning of this chapter. The none strategy is declared with a read-
ahead element. If the read-ahead element contains a page-size element or eager-load-group, it is ignored.
The none strategy is declared the following example.

Example 11.21. The jbosscmp-jdbc.xml none Declaration

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<query>

<query-method>
<method-name>findAll_none</method-name>
<method-params/>

</query-method>
<jboss-ql><![CDATA[
SELECT OBJECT(g)
FROM gangster g
ORDER BY g.gangsterId
]]></jboss-ql>
<read-ahead>

The CMP Engine

409

<strategy>none</strategy>
</read-ahead>

</query>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

11.8. Loading Process

In the previous section several steps use the phrase "when the entity is loaded." This was intentionally left
vague because the commit option specified for the entity and the current state of the transaction determine
when an entity is loaded. The following section describes the commit options and the loading processes.

11.8.1. Commit Options

Central to the loading process are the commit options, which control when the data for an entity expires. JBoss
supports four commit options A, B, C and D. The first three are described in the Enterprise JavaBeans Specifica-
tion, but the last one is specific to JBoss. A detailed description of each commit option follows:

• A: JBossCMP assumes it is the sole user of the database; therefore, JBossCMP can cache the current value
of an entity between transactions, which can result is substantial performance gains. As a result of this as-
sumption, no data managed by JBossCMP can be changed outside of JBossCMP. For example, changing
data in another program or with the use of direct JDBC (even within JBoss) will result in an inconsistent
database state.

• B: JBossCMP assumes that there is more than one user of the database but keeps the context information
about entities between transactions. This context information is used for optimizing loading of the entity.
This is the default commit option.

• C: JBossCMP discards all entity context information at the end of the transaction.

• D: This is a JBoss specific commit option. This option is similar to commit option A, except that the data
only remains valid for a specified amount of time.

The commit option is declared in the jboss.xml file. For a detailed description of this file see Chapter 5. The
following example changes the commit option to A for all entity beans in the application:

Example 11.22. The jboss.xml Commit Option Declaration

<jboss>
<container-configurations>

<container-configuration>
<container-name>Standard CMP 2.x EntityBean</container-name>
<commit-option>A</commit-option>

</container-configuration>
</container-configurations>

</jboss>

11.8.2. Eager-loading Process

The CMP Engine

410

16In a future version, JBossCMP will be able to keep the current data of a commit option B entity between transactions and validate that the
data is still current using last-update optimistic locking. For entities that contain a large amount of data, this will result in a significant
performance enhancement.

One of the most important changes in CMP 2.0 is the change from using class fields for CMP fields to abstract
accessor methods. In CMP 1.x, the container could not know which fields were required in a transaction, so the
container had to eager load every field when loading the bean16. In CMP 2.x, the container creates the imple-
mentation for the abstract accessors, so the container can know when the data for a field is required. JBossCMP
can be configured to eager load only some of the fields when loading an entity, and later lazy load the remain-
ing fields as needed.

When an entity is loaded, JBossCMP must determine the fields that need to be loaded. By default, JBossCMP
will use the eager-load-group of the last query that selected this entity. If the entity has not been selected in a
query, or the last query used the none read-ahead strategy, JBossCMP will use the default eager-load-group
declared for the entity. In the following example configuration, the basic load group is set as the default
eager-load-group for the GangsterEJB entity:

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<load-groups>

<load-group>
<load-group-name>most</load-group-name>
<field-name>name</field-name>
<field-name>nickName</field-name>
<field-name>badness</field-name>
<field-name>hangout</field-name>
<field-name>organization</field-name>

</load-group>
</load-groups>
<eager-load-group>most</eager-load-group>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

The eager loading process is initiated the first time a method is called on an entity in a transaction. A detailed
description of the load process follows:

• If the entity context is still valid, no loading is necessary, and therefore the loading process is done. The en-
tity context will be valid when using commit option A, or when using commit option D, and the data has not
timed out.

• Any residual data in the entity context is flushed. This assures that old data does not bleed into the new
load.

• The primary key value is injected back into the primary key fields. The primary key object is actually inde-
pendent of the fields and needs to be reloaded after the flush in step 2.

• All data in the preload cache for this entity is loaded into the fields.

• JBossCMP determines the additional fields that still need to be loaded. Normally the fields to load are de-
termined by the eager-load group of the entity, but can be overridden if the entity was located using a query
or CMR field with an on-find or on-load read ahead strategy. If all of the fields have already been loaded,
the load process skips to step 7.

• A query is executed to select the necessary column. If this entity is using the on-load strategy, a page of
data is loaded as described in Section 11.7.3.2. The data for the current entity is stored in the context and

The CMP Engine

411

the data for the other entities is stored in the preload cache.

• The ejbLoad method of the entity is called.

11.8.3. Lazy loading Process

Lazy loading is the other half of eager loading. If a field is not eager loaded, it must be lazy loaded. When the
bean accesses an unloaded field, JBossCMP loads the field and any field in a lazy-load-group of which the
unloaded field is a member. JBossCMP performs a set join and then removes any field that is already loaded.
An example configuration is shown below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>GangsterEJB</ejb-name>
<!-- ... -->
<load-groups>

<load-group>
<load-group-name>basic</load-group-name>
<field-name>name</field-name>
<field-name>nickName</field-name>
<field-name>badness</field-name>

</load-group>
<load-group>

<load-group-name>contact info</load-group-name>
<field-name>nickName</field-name>
<field-name>contactInfo</field-name>
<field-name>hangout</field-name>

</load-group>
</load-groups>
<!-- ... -->
<lazy-load-groups>

<load-group-name>basic</load-group-name>
<load-group-name>contact info</load-group-name>

</lazy-load-groups>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

When the bean provider calls getName() with this configuration, JBossCMP loads name, nickName and badness

(assuming they are not already loaded). When the bean provider calls getNickName(), the name, nickName,
badness, contactInfo, and hangout are loaded. A detailed description of the lazy loading process follows:

• All data in the preload cache for this entity is loaded into the fields.

• If the field value was loaded by the preload cache the lazy load process is finished.

• JBossCMP finds all of the lazy load groups that contain this field, performs a set join on the groups, and re-
moves any field that has already been loaded.

• A query is executed to select the necessary columns. As in the basic load process, JBossCMP may load a
block of entities. The data for the current entity is stored in the context and the data for the other entities is
stored in the preload cache.

11.8.3.1. Relationships

Relationships are a special case in lazy loading because a CMR field is both a field and query. As a field it can
be on-load block loaded, meaning the value of the currently sought entity and the values of the CMR field for
the next several entities are loaded. As a query, the field values of the related entity can be preloaded using on-

The CMP Engine

412

find.

Again, the easiest way to investigate the loading is to look at a usage scenario. In this example, an HTML table
is generated containing each gangster and their hangout. The example code follows:

Example 11.23. Relationship Lazy Loading Example Code

public String createGangsterHangoutHtmlTable()
throws FinderException

{
StringBuffer table = new StringBuffer();
table.append("<table>");
Collection gangsters = gangsterHome.findAll_onfind();
for (Iterator iter = gangsters.iterator(); iter.hasNext();) {

Gangster gangster = (Gangster)iter.next();

Location hangout = gangster.getHangout();
table.append("<tr>");
table.append("<td>").append(gangster.getName());
table.append("</td>");
table.append("<td>").append(gangster.getNickName());
table.append("</td>");
table.append("<td>").append(gangster.getBadness());
table.append("</td>");
table.append("<td>").append(hangout.getCity());
table.append("</td>");
table.append("<td>").append(hangout.getState());
table.append("</td>");
table.append("<td>").append(hangout.getZipCode());
table.append("</td>");
table.append("</tr>");

}

table.append("</table>");return table.toString();
}

For this example, the configuration of the Gangster findAll_onfind query is unchanged from the on-find

section. The configuration of the Location entity and Gangster-Hangout relationship follows:

Example 11.24. The jbosscmp-jdbc.xml Relationship Lazy Loading Configuration

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>LocationEJB</ejb-name>
<load-groups>

<load-group>
<load-group-name>quick info</load-group-name>
<field-name>city</field-name>
<field-name>state</field-name>
<field-name>zipCode</field-name>

</load-group>
</load-groups>
<eager-load-group/>

</entity>
</enterprise-beans>
<relationships>

<ejb-relation>
<ejb-relation-name>Gangster-Hangout</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

<ejb-relationship-role-name>
gangster-has-a-hangout

</ejb-relationship-role-name>

The CMP Engine

413

<key-fields/>
<read-ahead>

<strategy>on-find</strategy>
<page-size>4</page-size>
<eager-load-group>quick info</eager-load-group>

</read-ahead>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>
hangout-for-a-gangster

</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>locationID</field-name>
<column-name>hangout</column-name>

</key-field>
</key-filaelds>

</ejb-relationship-role>
</ejb-relation>

</relationships>
</jbosscmp-jdbc>

At line 25, JBossCMP will execute the following query:

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
ORDER BY t0_g.id ASC

Then at line 29, JBossCMP executes the following two queries to load the city, state, and zip fields of the
hideout:

SELECT gangster.id, gangster.hangout,
location.city, location.st, location.zip

FROM gangster, location
WHERE (gangster.hangout=location.id) AND

((gangster.id=0) OR (gangster.id=1) OR
(gangster.id=2) OR (gangster.id=3))

SELECT gangster.id, gangster.hangout,
location.city, location.st, location.zip

FROM gangster, location
WHERE (gangster.hangout=location.id) AND

((gangster.id=4) OR (gangster.id=5) OR
(gangster.id=6) OR (gangster.id=7))

The following table shows the execution of the queries:

id name nick_name badness hangout id city st zip

0 Yojimbo Bodyguard 7 0 0 San Fran CA 94108

1 Takeshi Master 10 1 1 San Fran CA 94133

2 Yuriko Four finger 4 2 2 San Fran CA 94133

3 Chow Killer 9 3 3 San Fran CA 94133

4 Shogi Lightning 8 4 4 San Fran CA 94133

5 Valentino Pizza-Face 4 5 5 New York NY 10017

6 Toni Toothless 2 6 6 Chicago IL 60661

7 Corleone Godfather 6 7 7 Las Vegas NV 89109

The CMP Engine

414

11.8.4. Lazy loading result sets

By default, when a multiobject finder or ejbSelect method is executed the ResultSet is read to the end imme-
diately. The client receives a collection of EJBLocalObject or CMP field values which it can then iterate
through. For big result sets this approach is not efficient. In some cases it is better to delay reading the next row
in the ResultSet until the client tries to read the corresponding value from the collection. You can get this beha-
viour for a query using the lazy-resultset-loading element.

<query>
<query-method>

<method-name>findAll</method-name>
</query-method>
<jboss-ql><![CDATA[select object(o) from A o]]></jboss-ql>
<lazy-resultset-loading>true</lazy-resultset-loading>

</query>

The are some issues you should be aware of when using lazy result set loading. Special care should be taken
when working with a Collection associated with a lazily loaded result set. The first call to iterator() returns
a special Iterator that reads from the ResultSet. Until this Iterator has been exhausted, subsequent calls to
iterator() or calls to the add() method will result in an exception. The remove() and size() methods work
as would be expected.

11.9. Transactions

All of the examples presented in this chapter have been defined to run in a transaction. Transaction granularity
is a dominating factor in optimized loading because transactions define the lifetime of preloaded data. If the
transaction completes, commits, or rolls back, the data in the preload cache is lost. This can result in a severe
negative performance impact.

The performance impact of running without a transaction will be demonstrated with an example similar to Ex-
ample 11.15. This example uses an on-find optimized query that selects the first four gangsters (to keep the
result set small), and it is executed without a wrapper transaction. The example code follows:

Example 11.25. No Transaction Loading Example Code

public String createGangsterHtmlTable_no_tx() throws FinderException
{

StringBuffer table = new StringBuffer();
table.append("<table>");

Collection gangsters = gangsterHome.findFour();
for(Iterator iter = gangsters.iterator(); iter.hasNext();) {

Gangster gangster = (Gangster)iter.next();
table.append("<tr>");
table.append("<td>").append(gangster.getName());
table.append("</td>");
table.append("<td>").append(gangster.getNickName());
table.append("</td>");
table.append("<td>").append(gangster.getBadness());
table.append("</td>");
table.append("</tr>");

}

table.append("</table>");
return table.toString();

}

The CMP Engine

415

17It's actually worse than this. JBossCMP executes each of these queries three times; once for each CMP field that is accessed. This is be-
cause the preloaded values are discarded between the CMP field accessor calls.

The following is the query executed at line 53.

Example 11.26. No Transaction on-find Optimized findAll Query

SELECT t0_g.id, t0_g.name, t0_g.nick_name, t0_g.badness
FROM gangster t0_g
WHERE t0_g.id < 4followi
ORDER BY t0_g.id ASC

Normally this would be the only query executed, but since this code is not running in a transaction, all of the
preloaded data is thrown away as soon as findAll returns. Then at line 56 JBossCMP executes the following
four queries17 (one for each loop):

Example 11.27. No Transaction on-load Optimized Load Queries

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=0) OR (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=1) OR (id=2) OR (id=3)

SELECT id, name, nick_name, badness
FROM gangster
WHERE (id=2) OR (id=3)

SELECT name, nick_name, badness
FROM gangster
WHERE (id=3)

The following figure shows the execution of the queries:

Figure 11.11. No Transaction on-find optimized query execution

This performance is much worse than read ahead none because of the amount of data loaded from the database.
The number of rows loaded is determined by the following equation:

The CMP Engine

416

This all happens because the transaction in the example is bounded by a single call on the entity. This brings up
the important question "How do I run my code in a transaction?" The answer depends on where the code runs.
If it runs in an EJB (session, entity, or message driven), the method must be marked with the Required or Re-
quiresNew trans-attribute in the assembly-descriptor. If the code is not running in an EJB, a user transac-
tion is necessary. The following code wraps a call to the declared method with a user transaction:

Example 11.28. User Transaction Example Code

public String createGangsterHtmlTable_with_tx()
throws FinderException

{
UserTransaction tx = null;
try {

InitialContext ctx = new InitialContext();
tx = (UserTransaction) ctx.lookup("UserTransaction");
tx.begin();

String table = createGangsterHtmlTable_no_tx();

if (tx.getStatus() == Status.STATUS_ACTIVE) {
tx.commit();

}
return table;

} catch (Exception e) {
try {

if (tx != null) tx.rollback();
} catch (SystemException unused) {

// eat the exception we are exceptioning out anyway
}
if (e instanceof FinderException) {

throw (FinderException) e;
}
if (e instanceof RuntimeException) {

throw (RuntimeException) e;
}

throw new EJBException(e);
}

}

11.10. Optimistic Locking

JBoss has supports for optimistic locking of entity beans. Optimistic locking allows multiple instances of the
same entity bean to be active simultaneously. Consistency is enforced based on the optimistic locking policy
choice. The optimistic locking policy choice defines the set of fields that are used in the commit time write of
modified data to the database. The optimistic consistency check asserts that the values of the chosen set of
fields has the same values in the database as existed when the current transaction was started. This is done us-
ing a select for UPDATE WHERE ... statement that contains the value assertions.

You specify the optimistic locking policy choice using an entity/optimistic-locking element in the
jbosscmp-jdbc.xml descriptor. The content model of the optimistic-locking element is shown below and
the description of the elements follows.

The CMP Engine

417

Figure 11.12. The jbosscmp-jdbc optimistic-locking element content model

• group-name: This element specifies that optimistic locking is based on the fields of a load-group. This
value of this element must match one of the entity's load-group-name. The fields in this group will be used
for optimistic locking.

• modified-strategy: This element specifies that optimistic locking is based on the modified fields. This
strategy implies that the fields that were modified during transaction will be used for optimistic locking.

• read-strategy: This element specifies that optimistic locking is based on the fields read. This strategy im-
plies that the fields that were read/changed in the transaction will be used for optimistic locking.

• version-column: This element specifies that optimistic locking is based on a version column strategy. Spe-
cifying this element will add an additional version field of type java.lang.Long to the entity bean for op-
timistic locking. Each update of the entity will increase the value of this field. The field-name element al-
lows for the specification of the name of the CMP field while the column-name element allows for the spe-

The CMP Engine

418

cification of the corresponding table column.

• timestamp-column: This element specifies that optimistic locking is based on a timestamp column
strategy. Specifying this element will add an additional version field of type java.util.Date to the entity
bean for optimistic locking. Each update of the entity will set the value of this field to the current time. The
field-name element allows for the specification of the name of the CMP field while the column-name ele-
ment allows for the specification of the corresponding table column.

• key-generator-factory: This element specifies that optimistic locking is based on key generation. The
value of the element is the JNDI name of a org.jboss.ejb.plugins.keygenerator.KeyGeneratorFactory

implementation. Specifying this element will add an additional version field to the entity bean for optimistic
locking. The type of the field must be specified via the field-type element. Each update of the entity will
update the key field by obtaining a new value from the key generator. The field-name element allows for
the specification of the name of the CMP field while the column-name element allows for the specification
of the corresponding table column.

A sample jbosscmp-jdbc.xml descriptor illustrating all of the optimistic locking strategies is given below.

Example 11.29. A sample jbosscmp-jdbc.xml descriptor illustrating the optimistic locking strategies

<!DOCTYPE jbosscmp-jdbc PUBLIC
"-//JBoss//DTD JBOSSCMP-JDBC 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_2.dtd">

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>

</defaults>
<enterprise-beans>

<entity>
<ejb-name>EntityGroupLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitygrouplocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<load-groups>

<load-group>
<load-group-name>string</load-group-name>
<field-name>stringField</field-name>

</load-group>
<load-group>

<load-group-name>all</load-group-name>
<field-name>stringField</field-name>
<field-name>dateField</field-name>

</load-group>
</load-groups>
<optimistic-locking>

<group-name>string</group-name>
</optimistic-locking>

</entity>
<entity>

<ejb-name>EntityModifiedLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitymodifiedlocking</table-name>

The CMP Engine

419

<cmp-field>
<field-name>dateField</field-name>

</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<modified-strategy/>
</optimistic-locking>

</entity>
<entity>

<ejb-name>EntityReadLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entityreadlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<read-strategy/>
</optimistic-locking>

</entity>
<entity>

<ejb-name>EntityVersionLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entityversionlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<version-column/>
<field-name>versionField</field-name>
<column-name>ol_version</column-name>
<jdbc-type>INTEGER</jdbc-type>
<sql-type>INTEGER(5)</sql-type>

</optimistic-locking>
</entity>
<entity>

<ejb-name>EntityTimestampLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitytimestamplocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<timestamp-column/>
<field-name>versionField</field-name>
<column-name>ol_timestamp</column-name>

The CMP Engine

420

<jdbc-type>TIMESTAMP</jdbc-type>
<sql-type>DATETIME</sql-type>

</optimistic-locking>
</entity>
<entity>

<ejb-name>EntityKeyGeneratorLocking</ejb-name>
<create-table>true</create-table>
<remove-table>true</remove-table>
<table-name>entitykeygenlocking</table-name>
<cmp-field>

<field-name>dateField</field-name>
</cmp-field>
<cmp-field>

<field-name>integerField</field-name>
</cmp-field>
<cmp-field>

<field-name>stringField</field-name>
</cmp-field>
<optimistic-locking>

<key-generator-factory>UUIDKeyGeneratorFactory</key-generator-factory>
<field-type>java.lang.String</field-type>
<field-name>uuidField</field-name>
<column-name>ol_uuid</column-name>
<jdbc-type>VARCHAR</jdbc-type>
<sql-type>VARCHAR(32)</sql-type>

</optimistic-locking>
</entity>

</enterprise-beans>
</jbosscmp-jdbc>

11.11. Entity Commands and Primary Key Generation

Support for primary key generation outside of the entity bean class has been added to 3.2. This is available
through custom implementations of the entity creation command objects used to insert entities into a persistent
store. The list of available commands is specified in entity-commands element of the jbosscmp-jdbc.xml

descriptor. The default entity-command may be specified in the jbosscmp-jdbc.xml in defaults element. Each
entity element can override the entity-command in defaults by specifying its own entity-command. The con-
tent model of the entity-commands and child elements is given below.

Figure 11.13. The jbosscmp-jdbc.xml entity-command element model

• entity-command: Each entity-command element specifies an entity generation implementation.

• entity-command/name: The name attribute specifies a name that allows the command defined in an en-

tity-commands section to be referenced in the defaults and entity elements.

• entity-command/class: The class attribute specifies the implementation of the
org.jboss.ejb.plugins.cmp.jdbc. JDBCCreateEntityCommand that supports the key generation. Database

The CMP Engine

421

vendor specific commands typically subclass the org.jboss.ejb.plugins.cmp.jdbc. JDBCIdentityColum-
nCreateCommand if the database generates the primary key as a side effect of doing an insert, or the
org.jboss.ejb.plugins.cmp.jdbc.JDBCInsertPKCreateCommand if the command must insert the gener-
ated key.

• entity-command/attribute: The optional attribute element(s) allows for the specification of arbitrary
name/value property paris that will be available to the entity command implementation class. The attrib-

ute element has a required name attribute that specifies the name property, and the attribute element con-
tent is the value of the property. The attribute values are accessible through the
org.jboss.ejb.plugins.cmp.jdbc.metadata.JDBCEntityCommandMetaData.getAttribute(String) meth-
od.

11.11.1. Existing Entity Commands

The following are the current entity-command definitions found in the standardjbosscmp-jdbc.xml

descriptor:

• default (org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand) The JDBCCreateEntityCommand

is the default entity creation as it is the entity-command referenced in the standardjbosscmp-jdbc.xml de-
faults element. This entity-command executes an INSERT INTO query using the assigned primary key value.

• no-select-before-insert: (org.jboss.ejb.plugins.cmp.jdbc.JDBCCreateEntityCommand) This is a vari-
ation on default that skips select before insert by specifying an attribute name="SQLExceptionProcessor"

that points to the jboss.jdbc:service=SQLExceptionProcessor service. The SQLExceptionProcessor

service provides a boolean isDuplicateKey(SQLException e) operation that allows a for determination
of any unique constraint violation.

• pk-sql (org.jboss.ejb.plugins.cmp.jdbc.JDBCPkSqlCreateCommand) The JDBCPkSqlCreateCommand ex-
ecutes an INSERT INTO query statement provided by the pk-sql attribute to obtain the next primary key
value. Its primary target usage are databases with sequence support.

• mysql-get-generated-keys: (org.jboss.ejb.plugins.cmp.jdbc.mysql.JDBCMySQLCreateCommand) The
JDBCMySQLCreateCommand executes an INSERT INTO query using the getGeneratedKeys method from
MySQL native java.sql.Statement interface implementation to fetch the generated key.

• oracle-sequence: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCOracleCreateCommand) The JDBCOr-

acleCreateCommand is a create command for use with Oracle that uses a sequence in conjuction with a RE-

TURNING clause to generate keys in a single statement. It has a required sequence element that specifies the
name of the sequence column.

• hsqldb-fetch-key: (org.jboss.ejb.plugins.cmp.jdbc.hsqldb.JDBCHsqldbCreateCommand) The JDBCH-

sqldbCreateCommand executes an INSERT INTO query after executing a CALL IDENTITY() statement to fetch
the generated key.

• sybase-fetch-key: (org.jboss.ejb.plugins.cmp.jdbc.sybase.JDBCSybaseCreateCommand) The JDBCSy-

baseCreateCommand executes an INSERT INTO query after executing a SELECT @@IDENTITY statement to
fetch the generated key.

• mssql-fetch-key: (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCSQLServerCreateCommand) The JDBC-

SQLServerCreateCommand for Microsoft SQL Server that uses the value from an IDENTITY columns. By de-
fault uses SELECT SCOPE_IDENTITY() to reduce the impact of triggers; can be overridden with pk-sql at-
tribute e.g. for V7.

The CMP Engine

422

• informix-serial: (org.jboss.ejb.plugins.cmp.jdbc.informix.JDBCInformixCreateCommand) The JDB-

CInformixCreateCommand executes an INSERT INTO query after using the getSerial method from Infor-
mix native java.sql.Statement interface implementation to fetch the generated key.

• postgresql-fetch-seq" (org.jboss.ejb.plugins.cmp.jdbc.keygen.JDBCPostgreSQLCreateCommand) The
JDBCPostgreSQLCreateCommand for PostgreSQL that fetches the currval of the sequence. The optional se-
quence attribute can be used to change the name of the sequence, with the default being ta-

ble_pkColumn_seq.

• key-generator: (org.jboss.ejb.plugins.cmp.jdbc.JDBCKeyGeneratorCreateCommand) The JDBCKeyGen-

eratorCreateCommand executes an INSERT INTO query after obtaining a value for the primary key from the
key generator referenced by the key-generator-factory. The key-generator-factory attribute must
provide the name of a JNDI binding of the org.jboss.ejb.plugins.keygenerator.KeyGeneratorFactory

implementation.

• get-generated-keys: (org.jboss.ejb.plugins.cmp.jdbc.jdbc3.JDBCGetGeneratedKeysCreateCommand) The
JDBCGetGeneratedKeysCreateCommand executes an INSERT INTO query using a statement built using the
JDBC3 prepareStatement(String, Statement.RETURN_GENERATED_KEYS) that has the capability to re-
trieve the auto-generated key. The generated key is obtained by calling the PreparedState-

ment.getGeneratedKeys method. Since this requires JDBC3 support it is only available in JDK1.4.1+ with
a supporting JDBC driver.

An example configuration using the hsqldb-fetch-key entity-command with the generated key mapped to a
known primary key cmp-field is shown below.

Example 11.30. A sample autogenerated key config for a known pk cmp-field

<jbosscmp-jdbc>
<enterprise-beans>
<entity>
<ejb-name>LocationEJB</ejb-name>
<pk-constraint>false</pk-constraint>
<table-name>location</table-name>

<cmp-field>
<field-name>locationID</field-name>
<column-name>id</column-name>
<auto-increment/>

</cmp-field>
<!-- ... -->
<entity-command name="hsqldb-fetch-key"/>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

An alternate example using an unknown primary key without an explicit cmp-field is shown below.

<jbosscmp-jdbc>
<enterprise-beans>

<entity>
<ejb-name>LocationEJB</ejb-name>
<pk-constraint>false</pk-constraint>
<table-name>location</table-name>
<unknown-pk>

<unknown-pk-class>java.lang.Integer</unknown-pk-class>
<field-name>locationID</field-name>
<column-name>id</column-name>
<jdbc-type>INTEGER</jdbc-type>

The CMP Engine

423

<sql-type>INTEGER</sql-type>
<auto-increment/>

</unknown-pk>
<!--...-->
<entity-command name="hsqldb-fetch-key"/>

</entity>
</enterprise-beans>

</jbosscmp-jdbc>

11.12. Defaults

JBossCMP global defaults are defined in the standardjbosscmp-jdbc.xml file of the server/

<server-name>/conf/ directory. Each application can override the global defaults in the jbosscmp-jdbc.xml

file. The default options are contained in a defaults element of the configuration file, and the content model is
shown below.

The CMP Engine

424

Figure 11.14. The jbosscmp-jdbc/defaults content model

An example of the defaults section follows:

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>

The CMP Engine

425

<create-table>true</create-table>
<remove-table>false</remove-table>
<read-only>false</read-only>
<read-time-out>300000</read-time-out>
<pk-constraint>true</pk-constraint>
<fk-constraint>false</fk-constraint>
<row-locking>false</row-locking>
<preferred-relation-mapping>foreign-key</preferred-relation-mapping>
<read-ahead>

<strategy>on-load</strategy>
<page-size>1000</page-size>
<eager-load-group>*</eager-load-group>

</read-ahead>
<list-cache-max>1000</list-cache-max>

</defaults>
</jbosscmp-jdbc>

11.12.1. A sample jbosscmp-jdbc.xml defaults declaration

Each option can apply to entities, relationships, or both, and can be overridden in the specific entity or relation-
ship. A detailed description of each option follows:

• datasource: This optional element is the jndi-name used to look up the datasource. All database connec-
tions used by an entity or relation-table are obtained from the datasource. Having different datasources
for entities is not recommended, as it vastly constrains the domain over which finders and ejbSelects can
query.

• datasource-mapping: This optional element specifies the name of the type-mapping, which determines
how Java types are mapped to SQL types, and how EJB-QL functions are mapped to database specific func-
tions. Type mappings are discussed in Section 11.13.2.

• create-table: This optional element when true, specifies that JBossCMP should attempt to create a table for
the entity. When the application is deployed, JBossCMP checks if a table already exists before creating the
table. If a table is found, it is logged, and the table is not created. This option is very useful during the early
stages of development when the table structure changes often. The default is false.

• alter-table: If create-table is used to automatically create the schema, alter-table can be used to keep
the schema current with changes to the entity bean. Alter table will perform the following specific tasks:

• new fields will be created
• fields which are no longer used will be removed
• string fields which are shorter than the declared length will have their length increased to the declared

length. (not supported by all databases)

• remove-table: This optional element when true, JBossCMP will attempt to drop the table for each entity
and each relation table mapped relationship. When the application is undeployed, JBossCMP will attempt to
drop the table. This option is very useful during the early stages of development when the table structure
changes often. The default is false.

• read-only: This optional element when true specifies that the bean provider will not be allowed to change
the value of any fields. A field that is read-only will not be stored in, or inserted into, the database. If a
primary key field is read-only, the create method will throw a CreateException. If a set accessor is called
on a read-only field, it throws an EJBException. Read only fields are useful for fields that are filled in by
database triggers, such as last update. The read-only option can be overridden on a per field basis. The de-
fault is false.

The CMP Engine

426

• read-time-out: This optional element is the amount of time in milliseconds that a read on a read only field
is valid. A value of 0 means that the value is always reloaded at the start of a transaction, and a value of -1
means that the value never times out. This option can also be overridden on a per CMP field basis. If read-
only is false, this value is ignored. The default is -1.

• row-locking: This optional element if true specifies that JBossCMP will lock all rows loaded in a transac-
tion. Most databases implement this by using the SELECT FOR UPDATE syntax when loading the entity, but
the actual syntax is determined by the row-locking-template in the datasource-mapping used by this en-
tity. The default is false.

• pk-constraint: This optional element if true specifies that JBossCMP will add a primary key constraint
when creating tables. The default is true.

• preferred-relation-mapping: This optional element specifies the preferred mapping style for relationships.
The preferred-relation-mapping element must be either foreign-key or relation-table.

• read-ahead: This optional element controls caching of query results and CMR fields for the entity. This op-
tion is discussed in Section 11.7.3.

• list-cache-max: This optional element specifies the number of read-lists that can be tracked by this en-
tity. This option is discussed in Section 11.7.3.2. The default is 1000.

• clean-read-ahead-on-load: When an entity is loaded from the read ahead cache, JBoss can remove the data
used from the read ahead cache. The default is false.

• fetch-size: This optional element specifies the number of entities to read in one round-trip to the underlying
datastore. The default is 0.

• unknown-pk: This optional element allows one to define the default mapping of an unknown primary key
type of java.lang.Object maps to the persistent store.

• entity-command: This optional element allows one to define the default command for entity creation. This
is described in detail in Section 11.11.

11.13. Datasource Customization

JBossCMP includes predefined type-mappings for many databases including: Cloudscape, DB2, DB2/400, Hy-
personic SQL, InformixDB, InterBase, MS SQLSERVER, MS SQLSERVER2000, mySQL, Oracle7, Oracle8,
Oracle9i, PointBase, PostgreSQL, PostgreSQL 7.2, SapDB, SOLID, and Sybase. If you do not like the supplied
mapping, or a mapping is not supplied for your database, you will have to define a new mapping. If you find an
error in one of the supplied mappings, or if you create a new mapping for a new database, please consider post-
ing a patch at the JBoss project page on SourceForge.

Customization of a database is done through the type-mapping section of the jbosscmp-jdbc.xml descriptor.
The content model for the type-mapping element is given in Figure 11.15. The elements are:

• name: This required element provides the name identifying the database customization. It is used to refer to
the mapping by the datasource-mapping elements found in defaults and entity.

• row-locking-template: This required element gives the PreparedStatement template used to create a row
lock on the selected rows. The template must support three arguments:

The CMP Engine

427

1. the select clause

2. the from clause. The order of the tables is currently not guaranteed

3. the where clause

If row locking is not supported in select statement this element should be empty. The most common form of
row locking is select for update as in: SELECT ?1 FROM ?2 WHERE ?3 FOR UPDATE.

• pk-constraint-template: This required element gives the PreparedStatement template used to create a
primary key constraint in the create table statement. The template must support two arguments

1. Primary key constraint name; which is always pk_{table-name}
2. Comma separated list of primary key column names

If a primary key constraint clause is not supported in a create table statement this element should be empty.
The most common form of a primary key constraint is: CONSTRAINT ?1 PRIMARY KEY (?2)

• fk-constraint-template: This is the template used to create a foreign key constraint in separate statement.
The template must support five arguments:

1. Table name
2. Foreign key constraint name; which is always fk_{table-name}_{cmr-field-name}
3. Comma separated list of foreign key column names
4. References table name
5. Comma separated list of the referenced primary key column names

If the datasource does not support foreign key constraints this element should be empty. The most common
form of a foreign key constraint is: ALTER TABLE ?1 ADD CONSTRAINT ?2 FOREIGN KEY (?3) REFERENCES

?4 (?5).

• auto-increment-template: This declares the SQL template for specifying auto increment columns.

• add-column-template: When alter-table is true, this SQL template specifies the syntax for adding a
column to an existing table. The default value is ALTER TABLE ?1 ADD ?2 ?3. The parameters are:

1. the table name
2. the column name
3. the column type

• drop-column-template: When alter-table is true, this SQL template specifies the syntax for droping a
column to from an existing table. The default value is ALTER TABLE ?1 DROP ?2. The parameters are:

1. the table name
2. the column name

• alter-column-template: When alter-table is true, this SQL template specifies the syntax for droping a
column to from an existing table. The default value is ALTER TABLE ?1 ALTER ?2 TYPE ?3. The parameters
are:

1. the table name
2. the column name
3. the column type

• alias-header-prefix: This required element gives the prefix used in creating the alias header. An alias head-

The CMP Engine

428

er is prepended to a generated table alias by the EJB-QL compiler to prevent name collisions. The alias
header is constructed as follows: alias-header-prefix + int_counter + alias-header-suffix. An example alias
header would be t0_ for an alias-header-prefix of "t" and an alias-header-suffix of "_".

• alias-header-suffix: This required element gives the suffix portion of the generated alias header.

• alias-max-length: This required element gives the maximum allowed length for the generated alias header.

• subquery-supported: This required element specifies if this type-mapping subqueries as either true or
false. Some EJB-QL operators are mapped to exists subqueries. If subquery-supported is false, the EJB-
QL compiler will use a left join and is null.

• true-mapping: This required element defines true identity in EJB-QL queries. Examples include TRUE, 1,
and (1=1).

• false-mapping: This required element defines false identity in EJB-QL queries. Examples include FALSE, 0,
and (1=0).

• function-mapping: This optional element specifies one or more the mappings from an EJB-QL function to
an SQL implementation. See Section 11.13.1 for the details.

• mapping: This required element specifies the mappings from a Java type to the corresponding JDBC and
SQL type. See Section 11.13.2 for the details.

The CMP Engine

429

Figure 11.15. The jbosscmp-jdbc type-mapping element content model.

11.13.1. Function Mapping

• function-name: This required element gives the EJB-QL function name, e.g., concat, substring.

• function-sql: This required element gives the SQL for the function as appropriate for the underlying data-
base. Examples for a concat function include: (?1 || ?2), concat(?1, ?2), (?1 + ?2).

11.13.2. Type Mapping

A type-mapping is simply a set of mappings between Java class types and database types. A set of type map-
pings is defined by a set of mapping elements, the content model for which is shown below.

The CMP Engine

430

Figure 11.16. The jbosscmp-jdbc mapping element content model.

If JBossCMP cannot find a mapping for a type, it will serialize the object and use the java.lang.Object map-
ping. The following describes the three child elements of the mapping element:

• java-type: This required element gives the fully qualified name of the Java class to be mapped. If the class
is a primitive wrapper class such as java.lang.Short, the mapping also applies to the primitive type.

• jdbc-type: This required element gives the JDBC type that is used when setting parameters in a JDBC Pre-

paredStatement or loading data from a JDBC ResultSet. The valid types are defined in java.sql.Types.

• sql-type: This required element gives the SQL type that is used in create table statements. Valid types are
only limited by your database vendor.

An example mapping element for a short in Oracle9i is shown below.

Example 11.31. A sample short mapping for Oracle9i

<jbosscmp-jdbc>
<type-mappings>

<type-mapping>
<name>Oracle9i</name>
<!--...-->
<mapping>

<java-type>java.lang.Short</java-type>
<jdbc-type>NUMERIC</jdbc-type>
<sql-type>NUMBER(5)</sql-type>

</mapping>
</type-mapping>

</type-mappings>
</jbosscmp-jdbc>

11.13.3. User Type Mappings

User type mappings allow one to map from JDBC column types to custom CMP fields types by specifying an
instance of org.jboss.ejb.plugins.cmp.jdbc.Mapper interface, the definition of which is shown below.

Example 11.32. The org.jboss.ejb.plugins.cmp.jdbc.Mapper interface

The CMP Engine

431

public interface Mapper
{

/**
* This method is called when CMP field is stored.
* @param fieldValue - CMP field value
* @return column value.
*/
Object toColumnValue(Object fieldValue);

/**
* This method is called when CMP field is loaded.
* @param columnValue - loaded column value.
* @return CMP field value.
*/
Object toFieldValue(Object columnValue);

}

A prototypical use case is the mapping of an integer type to its type-safe Java enum instance. The content mod-
el of the user-type-mappings element consists of one or more user-type-mapping elements, the content mod-
el of which is shown below.

Figure 11.17. The user-type-mapping content model >

• java-type: the fully qualified name of the CMP field type in the mapping.

• mapped-type: the fully qualified name of the database type in the mapping.

• mapper: the fully qualified name of the Mapper interface implementation that handles the conversion
between the java-type and mapped-type.

• check-dirty-after-get: This value defaults to false for primitive types and the basic java.lang immutable
wrappers (Integer, String, etc...). For potentially mutable objects, JBoss will mark they field as potentially
dirty after a get operation. If the dirty check on an object is too expensive, you can optimize it away by set-
ting check-dirty-after-get to false.

• state-factory: This specfies class name of a state factory object which can perform dirty checking for this
field. State factory classes must implement the CMPFieldStateFactory interface.

The CMP Engine

432

A
The JBoss Group and Our LGPL License

A.1. About The JBoss Group

JBoss Group LLC, is an Atlanta-based professional services company, created by Marc Fleury, founder and
lead developer of the JBoss J2EE-based Open Source web application server. JBoss Group brings together core
JBoss developers to provide services such as training, support and consulting, as well as management of the
JBoss software and services affiliate programs. These commercial activities subsidize the development of the
free core JBoss server. For additional information on the JBoss Group see the JBoss site ht-
tp://www.jboss.org/services/services.jsp.

A.2. The GNU Lesser General Public License (LGPL)

The JBoss source code is licensed under the LGPL (see http://www.gnu.org/copyleft/lesser.txt). This includes
all code in the org.jboss.* package namespace. Example A.1 gives the complete text of the LGPL license.

Example A.1. The GNU lesser general public license text

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

433

http://www.jboss.org/services/services.jsp
http://www.jboss.org/services/services.jsp
http://www.gnu.org/copyleft/lesser.txt

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
non-free programs enables many more people to use the whole GNUfree
software. For example, permission to use the GNU C Library in
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the

The JBoss Group and Our LGPL License

434

users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the later must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a

The JBoss Group and Our LGPL License

435

table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library

The JBoss Group and Our LGPL License

436

creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

The JBoss Group and Our LGPL License

437

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,

The JBoss Group and Our LGPL License

438

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

The JBoss Group and Our LGPL License

439

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
License as published by the Free Software Foundation; either modify
it under the terms of the GNU Lesser General Public
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all there is to it!

The JBoss Group and Our LGPL License

440

B
Book Example Installation

The book comes with the source code for the examples discussed in the book. The examples are included with
the book archive. When you unzip the JBossBook_326.zip archive this creates an AdminDevel directory that
contains an examples subdirectory. This is the examples directory referred to by the book.

The only customization needed before the examples may be used it to set the location of the JBoss server distri-
bution. This may be done by editing the examples/build.xml file and changing the jboss.dist property
value. This is shown in bold below:

<project name="JBossBook 3.2.x examples"
default="build-all" basedir=".">

<!-- Allow override from local properties file -->
<property file=".ant.properties" />
<!-- Override with your JBoss/Web server bundle dist location -->
<property name="jboss.dist" value="/tmp/jboss-3.2.6"/>
<property name="jboss.deploy.dir" value="${jboss.dist}/server/default/deploy"/>

or by creating an .ant.properties file in the examples directory that contains a definition for the jboss.dist

property. For example:

jboss.dist=/usr/JBoss3.2/jboss-3.2/build/output/jboss-3.2.6

Part of the verification process validates that the version you are running the examples against matches what
the book examples were tested against. If you have a problem running the examples first look for the output of
the validate target such as the following:

validate:
[java] ImplementationTitle: JBoss [WonderLand]
[java] ImplementationVendor: JBoss.org
[java] ImplementationVersion: 3.2.6RC2 (build: CVSTag=Branch_3_2 date=200409270100)
[java] SpecificationTitle: JBoss
[java] SpecificationVendor: JBoss (http://www.jboss.org/)
[java] SpecificationVersion: 3.2.6
[java] JBoss version is: 3.2.6

441

	jbossj2ee
	Getting Started with JBoss
	Contents

	Preface
	Foreword
	Target Audience
	What this Book Covers
	About the Authors

	CHAPTER 1 Getting Started
	1.1. Downloading and Installing JBoss
	1.2. Starting and Stopping the Server
	FIGURE 1.1. View of the JMX Management Console Web Application
	1.2.1. Running as a Service

	CHAPTER 2 The JBoss Server - A Quick Tour
	2.1. Server Structure
	2.1.1. Main Directories
	FIGURE 2.1. JBoss Directory Structure

	2.1.2. Server Configurations

	2.2. Basic Configuration Issues
	2.2.1. Core Services
	2.2.1.1 Logging Service
	2.2.1.2 Security Service

	2.2.2. Additional Services

	2.3. The Web Container - Tomcat

	CHAPTER 3 About the Example Applications
	3.1. The J2EE Tutorial
	3.1.1. What’s Different?
	3.1.1.1 Container-Specific Deployment Descriptors
	3.1.1.2 Database Changes
	3.1.1.3 Security Configuration

	3.2. J2EE in the Real World
	TABLE 1. Further Information Sources

	CHAPTER 4 The Duke’s Bank Application
	4.1. Building the Application
	4.1.1. Preparing the Files
	4.1.2. Compiling the Java Source
	4.1.3. Package the EJBs
	4.1.4. Package the WAR File.
	4.1.5. Package the Java Client
	4.1.6. Assembling the EAR
	4.1.7. The Database
	4.1.7.1 Enabling the HSQL MBean and TCP/IP Connections
	4.1.7.2 Creating the Database Schema
	4.1.7.3 The HSQL Database Manager Tool
	FIGURE 4.1. View of the HSQL Database Manger

	4.1.8. Deploying the Application

	4.2. JNDI and Java Clients
	4.2.1. The jndi.properties File

	4.3. Security
	4.3.1. Configuring a Security Domain
	1. Add the security-domain element to each of the jboss.xml and jboss-web.xml descriptors in the dd directory. It should already be there, commented out.
	2. Add an entry to the conf/login.xml file for the “dukesbank” security domain as above (optional).
	3. Create the users.properties and roles.properties files which contain the security information for the information for the application and include these in the EAR file (this has already been done for you).
	4. Follow through the build steps to re-package the EJBs and the web application (to make sure the modified descriptors are included).
	5. Assemble the EAR file and re-deploy it to JBoss.

	4.3.2. UsersRolesLoginModule Files
	4.3.3. The J2EE Security Model
	4.3.3.1 Authentication
	4.3.3.2 Access Control (Authorization)

	4.3.4. Application JNDI Information in the JMX Console
	FIGURE 4.2. JMX Console JNDI View

	CHAPTER 5 JMS and Message- Driven Beans
	5.1. Building the Example
	5.1.1. Compiling and Packaging the MDB and Client
	5.1.1.1 Specifying the Source Queue for the MDB

	5.2. Deploying and Running the Example
	5.2.1. Running the Client

	5.3. Managing JMS Destinations
	5.3.1. The jbossmq-destinations-service.xml File
	5.3.2. Using the DestinationManager from the JMX Console
	5.3.3. Administering Destinations

	CHAPTER 6 Container-Managed Persistence
	6.1. Building the Example
	6.1.1. Compiling the Code
	6.1.2. Packaging the Jars

	6.2. Deploying and Running the Application
	6.2.1. Running the Client

	6.3. CMP Customization
	6.3.1. XDoclet

	CHAPTER 7 Web Services with JBoss.Net
	7.1. JBoss.net
	7.2. Duke’s Bank as a Web Service
	7.2.1. The Web Service Archive (WSR) File
	7.2.2. Building and Deploying the WSR File
	7.2.3. Running the Client
	7.2.4. Net Traffic Analysis
	FIGURE 7.1. TCPMon output of Web Services Call

	CHAPTER 8 Using other Databases
	8.1. DataSource Configuration
	8.1.1. JDBC-Wrapper Resource Adapters
	8.1.2. DataSource Configuration Files

	8.2. Examples
	8.2.1. Using MySQL as the Default DataSource
	8.2.1.1 Creating a Database and User
	8.2.1.2 Installing the JDBC Driver and Deploying the DataSource
	8.2.1.3 Testing the MySQL DataSource

	8.2.2. Setting up an XADataSource with Oracle 9i
	8.2.2.1 Padding Xid Values for Oracle Compatibility
	8.2.2.2 Installing the JDBC Driver and Deploying the DataSource
	8.2.2.3 Testing the Oracle DataSource

	CHAPTER 9 Security Configuration
	9.1. Security Using a Database
	9.2. Using Password Hashing
	FIGURE A.1. Web Admin. Console Showing Stateful Session Bean Statistics.
	TABLE 1. Bean Statistics Data

	admin
	JBoss Admin Development Guide
	Table of Contents
	Forward
	About Open Source
	About JBoss
	1. JBoss: A Full J2EE Implementation with JMX
	2. What this Book Covers

	Chapter 1. Installing and Building the JBoss Server
	1.1. Getting the Binary Files
	1.1.1. Prerequisites
	1.1.2. Installing the Binary Package
	1.1.2.1. Directory Structure

	1.1.3. The Default Server Configuration File Set

	1.2. Basic Installation Testing
	1.3. Booting from a Network Server
	1.4. Building the Server from Source Code
	1.4.1. Accessing the JBoss CVS Repositories at SourceForge
	1.4.2. Understanding CVS
	1.4.3. Anonymous CVS Access
	1.4.4. Obtaining a CVS Client
	1.4.5. Building the JBoss 3.2.6 Distribution Using the Source Code
	1.4.6. Building the JBoss 3.2.6 Distribution Using the CVS Source Code
	1.4.7. An Overview of the JBoss CVS Source Tree
	1.4.8. Using the JBossTest unit testsuite

	Chapter 2. The JBoss JMX Microkernel
	2.1. JMX
	2.1.1. An Introduction to JMX
	2.1.1.1. Instrumentation Level
	2.1.1.2. Agent Level
	2.1.1.3. Distributed Services Level
	2.1.1.4. JMX Component Overview
	2.1.1.4.1. Managed Beans or MBeans
	2.1.1.4.2. Notification Model
	2.1.1.4.3. MBean Metadata Classes
	2.1.1.4.4. MBean Server
	2.1.1.4.5. Agent Services

	2.2. JBoss JMX Implementation Architecture
	2.2.1. The JBoss ClassLoader Architecture
	2.2.2. Class Loading and Types in Java
	2.2.2.1. ClassCastExceptions - I'm Not Your Type
	2.2.2.2. IllegalAccessException - Doing what you should not
	2.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are
	2.2.2.3.1. Debugging Class Loading Issues

	2.2.2.4. Inside the JBoss Class Loading Architecture
	2.2.2.4.1. Viewing Classes in the Loader Repository
	2.2.2.4.2. Scoping Classes
	2.2.2.4.3. The Complete Class Loading Model

	2.2.3. JBoss XMBeans
	2.2.3.1. Descriptors
	2.2.3.2. The Management Class
	2.2.3.3. The Constructors
	2.2.3.4. The Attributes
	2.2.3.5. The Operations
	2.2.3.6. Notifications

	2.3. Connecting to the JMX Server
	2.3.1. Inspecting the Server - the JMX Console Web Application
	2.3.1.1. Securing the JMX Console

	2.3.2. Connecting to JMX Using RMI
	2.3.3. Command Line Access to JMX
	2.3.3.1. Connecting twiddle to a Remote Server
	2.3.3.2. Sample twiddle Command Usage

	2.3.4. Connecting to JMX Using Any Protocol

	2.4. Using JMX as a Microkernel
	2.4.1. The Startup Process
	2.4.2. JBoss MBean Services
	2.4.2.1. The SARDeployer MBean
	2.4.2.2. The Service Life Cycle Interface
	2.4.2.3. The ServiceController MBean
	2.4.2.3.1. The create(ObjectName) method
	2.4.2.3.2. The start(ObjectName) method
	2.4.2.3.3. The stop(ObjectName) method
	2.4.2.3.4. The destroy(ObjectName) method

	2.4.2.4. Specifying Service Dependencies
	2.4.2.5. Identitifying Unsatisfied Dependencies
	2.4.2.6. Hot Deployment of Components, the URLDeploymentScanner

	2.4.3. Writing JBoss MBean Services
	2.4.3.1. A Standard MBean Example
	2.4.3.2. XMBean Examples
	2.4.3.2.1. Version 1, The Annotated JNDIMap XMBean
	2.4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean
	2.4.3.2.3. Version 3, Adding Security and Remote Access to the JNDIMap XMBean

	2.4.4. Deployment Ordering and Dependencies

	2.5. JBoss Deployer Architecture
	2.5.1. Deployers and ClassLoaders

	2.6. Exposing MBean Events via SNMP
	2.6.1. The SNMP Adaptor Service
	2.6.2. The Event to Trap Service

	2.7. Remote Access to Services, Detached Invokers
	2.7.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service
	2.7.2. Detached Invoker Reference
	2.7.2.1. The JRMPInvoker - RMI/JRMP Transport
	2.7.2.2. The PooledInvoker - RMI/Socket Transport
	2.7.2.3. The IIOPInvoker - RMI/IIOP Transport
	2.7.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies
	2.7.2.5. The HttpInvoker - RMI/HTTP Transport
	2.7.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	2.7.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport
	2.7.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies
	2.7.2.9. Steps to Expose Any RMI Interface via HTTP

	Chapter 3. Naming on JBoss
	3.1. An Overview of JNDI
	3.1.1. The JNDI API
	3.1.1.1. Names
	3.1.1.2. Contexts
	3.1.1.2.1. Obtaining a Context using InitialContext

	3.1.2. J2EE and JNDI - The Application Component Environment
	3.1.2.1. ENC Usage Conventions
	3.1.2.1.1. The ejb-jar.xml ENC Elements
	3.1.2.1.2. The web.xml ENC Elements
	3.1.2.1.3. The jboss.xml ENC Elements
	3.1.2.1.4. The jboss-web.xml ENC Elements
	3.1.2.1.5. Environment Entries
	3.1.2.1.6. EJB References
	3.1.2.1.7. EJB References with jboss.xml and jboss-web.xml
	3.1.2.1.8. EJB Local References
	3.1.2.1.9. Resource Manager Connection Factory References
	3.1.2.1.10. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
	3.1.2.1.11. Resource Environment References
	3.1.2.1.12. Resource Environment References and jboss.xml, jboss-web.xml

	3.2. The JBossNS Architecture
	3.2.1. The Naming InitialContext Factories
	3.2.1.1. Naming Discovery in Clustered Environments
	3.2.1.2. The HTTP InitialContext Factory Implementation
	3.2.1.3. The Login InitialContext Factory Implementation

	3.2.2. Accessing JNDI over HTTP
	3.2.3. Accessing JNDI over HTTPS
	3.2.4. Securing Access to JNDI over HTTP
	3.2.5. Securing Access to JNDI with a Read-Only Unsecured Context
	3.2.6. Additional Naming MBeans
	3.2.6.1. org.jboss.naming.ExternalContext MBean
	3.2.6.2. The org.jboss.naming.NamingAlias MBean
	3.2.6.3. The org.jboss.naming.JNDIView MBean

	Chapter 4. Transactions on JBoss
	4.1. Transaction/JTA Overview
	4.1.1. Pessimistic and optimistic locking
	4.1.2. The components of a distributed transaction
	4.1.3. The two-phase XA protocol
	4.1.4. Heuristic exceptions
	4.1.5. Transaction IDs and branches

	4.2. JBoss Transaction Internals
	4.2.1. Adapting a Transaction Manager to JBoss
	4.2.2. The Default Transaction Manager
	4.2.2.1. org.jboss.tm.XidFactory

	4.2.3. UserTransaction Support

	Chapter 5. EJBs on JBoss
	5.1. The EJB Client Side View
	5.1.1. Specifying the EJB Proxy Configuration

	5.2. The EJB Server Side View
	5.2.1. Detached Invokers - The Transport Middlemen
	5.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	5.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

	5.3. The EJB Container
	5.3.1. EJBDeployer MBean
	5.3.1.1. Verifying EJB deployments
	5.3.1.2. Deploying EJBs Into Containers
	5.3.1.3. Container configuration information
	5.3.1.3.1. The container-name Element
	5.3.1.3.2. The call-logging Element
	5.3.1.3.3. The invoker-proxy-binding-name Element
	5.3.1.3.4. The container-interceptors Element
	5.3.1.3.5. The instance-pool and container-pool-conf Elements
	5.3.1.3.6. The instance-cache and container-cache-conf Elements
	5.3.1.3.7. The persistence-manager Element
	5.3.1.3.8. The web-class-loader Element
	5.3.1.3.9. The locking-policy Element
	5.3.1.3.10. The commit-option and optiond-refresh-rate Element
	5.3.1.3.11. The security-domain Element
	5.3.1.3.12. cluster-config
	5.3.1.3.13. depends

	5.3.2. Container Plug-in Framework
	5.3.2.1. org.jboss.ejb.ContainerPlugin
	5.3.2.2. org.jboss.ejb.Interceptor
	5.3.2.3. org.jboss.ejb.InstancePool
	5.3.2.4. org.jboss.ebj.InstanceCache
	5.3.2.5. org.jboss.ejb.EntityPersistenceManager
	5.3.2.6. org.jboss.ejb.StatefulSessionPersistenceManager

	5.4. Entity Bean Locking and Deadlock Detection
	5.4.1. Why JBoss Needs Locking
	5.4.2. Entity Bean Lifecycle
	5.4.3. Default Locking Behavior
	5.4.4. Pluggable Interceptors and Locking Policy
	5.4.5. Deadlock
	5.4.5.1. Dedlock Detection
	5.4.5.2. Catching ApplicationDeadlockException
	5.4.5.3. Viewing Lock Information

	5.4.6. Advanced Configurations and Optimizations
	5.4.6.1. Short-lived Transactions
	5.4.6.2. Ordered Access
	5.4.6.3. Read-Only Beans
	5.4.6.4. Explicitly Defining Read-Only Methods
	5.4.6.5. Instance Per Transaction Policy

	5.4.7. Running Within a Cluster
	5.4.8. Troubleshooting
	5.4.8.1. Locking Behavior Not Working
	5.4.8.2. IllegalStateException
	5.4.8.3. Hangs and Transaction Timeouts

	Chapter 6. Messaging on JBoss
	6.1. JMS Examples
	6.1.1. A Point-To-Point Example
	6.1.2. A Pub-Sub Example
	6.1.3. A Pub-Sub With Durable Topic Example
	6.1.4. A Point-To-Point With MDB Example

	6.2. JBoss Messaging Overview
	6.2.1. Invocation Layer
	6.2.1.1. RMI IL (deprecated)
	6.2.1.2. OIL IL (deprecated)
	6.2.1.3. UIL IL (deprecated)
	6.2.1.4. UIL2 IL
	6.2.1.5. JVM IL
	6.2.1.6. HTTP IL

	6.2.2. Security Manager
	6.2.3. Destination Manager
	6.2.4. Message Cache
	6.2.5. State Manager
	6.2.6. Persistence Manager
	6.2.6.1. File PM
	6.2.6.2. Rolling Logged PM
	6.2.6.3. JDBC2 PM

	6.2.7. Destinations
	6.2.7.1. Queues
	6.2.7.2. Topics

	6.3. JBoss Messaging Configuration and MBeans
	6.3.1. org.jboss.mq.il.jvm.JVMServerILService
	6.3.2. org.jboss.mq.il.rmi.RMIServerILService (deprecated)
	6.3.3. org.jboss.mq.il.oil.OILServerILService (deprecated)
	6.3.4. org.jboss.mq.il.uil.UILServerILService (deprecated)
	6.3.5. org.jboss.mq.il.uil2.UILServerILService
	6.3.5.1. Configuring ILs for SSL
	6.3.5.2. JMS client properties for the UIL2 transport

	6.3.6. org.jboss.mq.il.http.HTTPServerILService
	6.3.7. org.jboss.mq.server.jmx.Invoker
	6.3.8. org.jboss.mq.server.jmx.InterceptorLoader
	6.3.9. org.jboss.mq.sm.file.DynamicStateManager
	6.3.10. org.jboss.mq.security.SecurityManager
	6.3.11. org.jboss.mq.server.jmx.DestinationManager
	6.3.12. org.jboss.mq.server.MessageCache
	6.3.13. org.jboss.mq.pm.file.CacheStore
	6.3.14. org.jboss.mq.pm.file.PersistenceManager
	6.3.15. org.jboss.mq.pm.rollinglogged.PersistenceManager
	6.3.16. org.jboss.mq.pm.jdbc2.PersistenceManager
	6.3.17. Destination MBeans
	6.3.17.1. org.jboss.mq.server.jmx.Queue
	6.3.17.2. org.jboss.mq.server.jmx.Topic

	6.3.18. Administration Via JMX
	6.3.18.1. Creating Queues At Runtime
	6.3.18.2. Creating Topics At Runtime
	6.3.18.3. Managing a JBossMQ User IDs at Runtime

	6.4. Specifying the MDB JMS Provider
	6.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean
	6.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean
	6.4.3. Integrating non-JBoss JMS Providers

	Chapter 7. Connectors on JBoss
	7.1. JCA Overview
	7.2. An Overview of the JBossCX Architecture
	7.2.1. BaseConnectionManager2 MBean
	7.2.2. RARDeployment MBean
	7.2.3. JBossManagedConnectionPool MBean
	7.2.4. CachedConnectionManager MBean
	7.2.5. A Sample Skeleton JCA Resource Adaptor

	7.3. Configuring JCA Adaptors
	7.3.1. Configuring JDBC DataSources
	7.3.2. Configuring Generic JCA Adaptors
	7.3.3. Sample Configurations

	Chapter 8. Security on JBoss
	8.1. J2EE Declarative Security Overview
	8.1.1. Security References
	8.1.2. Security Identity
	8.1.3. Security roles
	8.1.4. EJB method permissions
	8.1.5. Web Content Security Constraints
	8.1.6. Enabling Declarative Security in JBoss

	8.2. An Introduction to JAAS
	8.2.1. What is JAAS?
	8.2.1.1. The JAAS Core Classes
	8.2.1.1.1. Subject and Principal
	8.2.1.1.2. Authentication of a Subject

	8.3. The JBoss Security Model
	8.3.1. Enabling Declarative Security in JBoss Revisited

	8.4. The JBoss Security Extension Architecture
	8.4.1. How the JaasSecurityManager Uses JAAS
	8.4.2. The JaasSecurityManagerService MBean
	8.4.3. The JaasSecurityDomain MBean
	8.4.4. An XML JAAS Login Configuration MBean
	8.4.5. The JAAS Login Configuration Management MBean
	8.4.6. Using and Writing JBossSX Login Modules
	8.4.6.1. org.jboss.security.auth.spi.IdentityLoginModule
	8.4.6.2. org.jboss.security.auth.spi.UsersRolesLoginModule
	8.4.6.3. org.jboss.security.auth.spi.LdapLoginModule
	8.4.6.4. org.jboss.security.auth.spi.DatabaseServerLoginModule
	8.4.6.5. BaseCertLoginModule
	8.4.6.6. org.jboss.security.auth.spi.ProxyLoginModule
	8.4.6.7. org.jboss.security.auth.spi.RunAsLoginModule
	8.4.6.8. org.jboss.security.ClientLoginModule

	8.4.7. Writing Custom Login Modules
	8.4.7.1. Support for the Subject Usage Pattern
	8.4.7.2. A Custom LoginModule Example

	8.4.8. The DynamicLoginConfig service

	8.5. The Secure Remote Password (SRP) Protocol
	8.5.1. Providing Password Information for SRP
	8.5.2. Inside of the SRP algorithm
	8.5.2.1. An SRP example

	8.6. Running JBoss with a Java 2 security manager
	8.7. Using SSL with JBoss using JSSE
	8.8. Configuring JBoss for use Behind a Firewall
	8.9. How to Secure the JBoss Server
	8.9.1. The jmx-console.war
	8.9.2. The web-console.war
	8.9.3. The http-invoker.sar
	8.9.4. The jmx-invoker-adaptor-server.sar

	Chapter 9. Integrating Servlet Containers
	9.1. The AbstractWebContainer Class
	9.1.1. The AbstractWebContainer Contract
	9.1.2. Creating an AbstractWebContainer Subclass
	9.1.2.1. Use the Thread Context Class Loader
	9.1.2.2. Integrate Logging Using log4j
	9.1.2.3. Delegate web container authentication and authorization to JBossSX

	9.2. JBoss/Tomcat-5 bundle notes
	9.2.1. The Tomcat server.xml file
	9.2.1.1. Connector
	9.2.1.2. Engine
	9.2.1.3. Host
	9.2.1.4. DefaultContext
	9.2.1.5. Logger
	9.2.1.6. Valve

	9.2.2. Using SSL with the JBoss/Tomcat bundle
	9.2.3. Setting up Virtual Hosts
	9.2.4. Serving Static Content
	9.2.5. Using Apache with the Tomcat
	9.2.6. Using Clustering

	Chapter 10. MBean Services Miscellany
	10.1. System Properties Management
	10.2. Property Editor Management
	10.3. Services Binding Management
	10.3.1. Running Two JBoss Instances

	10.4. Scheduling Tasks
	10.4.1. org.jboss.varia.scheduler.Scheduler

	10.5. The JBoss Logging Framework
	10.5.1. org.jboss.logging.Log4jService

	10.6. RMI Dynamic Class Loading
	10.6.1. org.jboss.web.WebService

	Chapter 11. The CMP Engine
	11.1. Getting Started
	11.1.1. Example Code
	11.1.2. Tests
	11.1.3. Read-ahead

	11.2. The jbosscmp-jdbc Structure
	11.3. Entity Beans
	11.3.1. Entity Mapping

	11.4. CMP-Fields
	11.4.1. CMP-Field Abstract Accessors
	11.4.2. CMP-Field Declaration
	11.4.3. CMP-Field Column Mapping
	11.4.4. Read-only Fields
	11.4.5. Auditing Entity Access
	11.4.6. Dependent Value Classes (DVCs)

	11.5. Container Managed Relationships
	11.5.1. CMR-Field Abstract Accessors
	11.5.2. Relationship Declaration
	11.5.3. Relationship Mapping
	11.5.3.1. Relationship Role Mapping
	11.5.3.2. Foreign Key Mapping
	11.5.3.3. Relation-table Mapping

	11.6. Queries
	11.6.1. Finder and ejbSelect Declaration
	11.6.2. EJB-QL Declaration
	11.6.3. Overriding the EJB-QL to SQL Mapping
	11.6.4. JBossQL
	11.6.5. DynamicQL
	11.6.6. DeclaredSQL
	11.6.6.1. Parameters

	11.6.7. EJBQL 2.1 and SQL92 queries
	11.6.8. BMP Custom Finders

	11.7. Optimized Loading
	11.7.1. Loading Scenario
	11.7.2. Load Groups
	11.7.3. Read-ahead
	11.7.3.1. on-find
	11.7.3.1.1. Left join read ahead
	11.7.3.1.2. D#findByPrimaryKey
	11.7.3.1.3. D#findAll
	11.7.3.1.4. A#findAll
	11.7.3.1.5. A#findMeParentGrandParent

	11.7.3.2. on-load
	11.7.3.3. none

	11.8. Loading Process
	11.8.1. Commit Options
	11.8.2. Eager-loading Process
	11.8.3. Lazy loading Process
	11.8.3.1. Relationships

	11.8.4. Lazy loading result sets

	11.9. Transactions
	11.10. Optimistic Locking
	11.11. Entity Commands and Primary Key Generation
	11.11.1. Existing Entity Commands

	11.12. Defaults
	11.12.1. A sample jbosscmp-jdbc.xml defaults declaration

	11.13. Datasource Customization
	11.13.1. Function Mapping
	11.13.2. Type Mapping
	11.13.3. User Type Mappings

	Appendix A. The JBoss Group and Our LGPL License
	A.1. About The JBoss Group
	A.2. The GNU Lesser General Public License (LGPL)

	Appendix B. Book Example Installation

